RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
  Adrenergics
  Analgesics
  Anti Cancer Drugs
  Anti-Clotting Drugs
  Anti-Inflammatory
  Antibiotics
   Sirolimus
   Tigecycline
  Anticholesterol
  Antihypertensives
  Antivirals
  Fatty Acids
  Hypnotics
  Metals
  PPI
  Surfactants
  Varenicline
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Antibiotics Channel

subscribe to Antibiotics newsletter
Latest Research : Pharmacology : Antibiotics

   EMAIL   |   PRINT
Inhibition of protein HipA pevents cell dormancy and bacterial persistence

Jan 15, 2009 - 2:32:01 PM , Reviewed by: Dr. Sanjukta Acharya
"For antibiotics to work, bacteria have to be growing. Dormancy stops everything, allowing some bacteria to persist after treatment," said senior author Richard Brennan, Ph.D.

 
[RxPG] Bacteria hunker down and survive antibiotic attack when a protein flips a chemical switch that throws them into a dormant state until treatment abates, researchers at The University of Texas M. D. Anderson Cancer Center report in the Jan.16 edition of Science.

"For antibiotics to work, bacteria have to be growing. Dormancy stops everything, allowing some bacteria to persist after treatment," said senior author Richard Brennan, Ph.D., professor in M. D. Anderson's Department of Biochemistry and Molecular Biology.

By demonstrating in detail how the HipA protein freezes bacterial activity, the researchers have opened the possibility of adding a new class of drugs to therapy against chronic and multidrug resistant bacterial infection.

Working in Escherichia coli, the team solved the structure of HipA and several of its protein complexes down to the atomic level, confirming that HipA is a protein kinase - an enzyme that works by transferring phosphate groups to its target molecules.

HipA is a type of protein kinase that is uncommon in bacteria, said lead author Maria Schumacher, Ph.D., associate professor of biochemistry and molecular biology. While other types of phosphorylation occur in bacteria, HipA phosphorylates proteins at their serine or threonine amino acids. This kinase activity is more commonly associated with eukaryotic cells, which make up animals, plants and fungi, and are generally thought to be more complex.

"These 'simple bacteria' are so complex. We're finding that life is sophisticated at all levels," Schumacher said. HipA is active in other types of gram-negative bacteria, which cause significant human bacterial infections.

Inhibitor could make persistent cells 'vanish'

A number of cancer drugs inhibit kinase activity in specific targets.

"If you stop HipA from working, there essentially is no persistence," Brennan said. "We need to see whether kinase inhibitors will bind to and block HipA's active site. If they work, persistent cells, which are already rare, would vanish." Persistent cells are a one-in-a-million-cells occurrence because HipA is normally kept in check by a protein called HipB.

Persistence is common in "biofilms," bacterial colonies that become attached to a surface in a supportive matrix. Drug-resistant biofilms cause about 60 percent of infections in the developed world, the researchers note.

Overexpression of HipA previously had been associated with cell dormancy and bacterial persistence. Evidence had pointed to kinase activity.

Schumacher, Brennan and colleagues demonstrated the molecular details of HipA's role in multidrug tolerance and HipB's role keeping HipA under wraps in a series of experiments:


Using X-ray crystallography to determine and then compare the structures of several HipA complexes, they showed that HipA has a serine/threonine protein kinase fold and that it binds tightly to adenosine triphosphate (ATP), a common characteristic of kinases. Phosphorylation occurs when an enzyme binds to both ATP and to its target protein.
Assays of candidate proteins to identify a target for HipA found that EF-Tu interacts strongly with HipA in the presence of ATP. EF-Tu is the most abundant protein in E.coli and plays an essential role in protein synthesis.
Subsequent experiments and structural analysis of a HipA/EF-Tu peptide complex indicated that HipA phosphorylates EF-Tu, freezing up the bacteria's protein-making machinery and inducing dormancy.
To analyze how HipB normally prevents HipA's function, the team solved the structure of the HipB/DNA/HipA complex. HipB tightly binds two HipA molecules in a sandwich-like structure.
HipB does not block HipA's active site, but inactivates it by forcing it into an "open" position. "Proteins move a lot to function, they open and close - think of a clam shell, for example," Brennan explains. To function, a protein must be able to close down on its target molecules - called substrates. The closed state is the active state.
HipB also might physically sequester HipA from EF-Tu because the HipA/HipB/DNA complex is located in E. coli's nucleoid, far from the bacteria's membrane where EF-Tu is mainly found.

HipA is free to cause trouble when its ties to HipB are broken; an infrequent occurrence which the authors note is likely caused by proteases tugging the smaller and structurally vulnerable HipB protein out of the complex.

Protein kinases often bind to more than one protein, so there are likely multiple targets for the protein in E. coli and other gram-negative bacteria, Schumacher and Brennan said.

Future research will focus on finding other HipA targets in E. coli, and kinase inhibitors will be examined for their ability to affect HipA function. If a promising inhibitor is found, its structure will be solved to clarify its binding mode and how it might be tweaked to bind HipA even better. "Structure-based drug design should provide the best chance at formulating highly specific and effective drugs against HipA," Schumacher said.




Publication: Jan.16 edition of Science

Funding information and declaration of competing interests: Funding for the research was provided by a Burroughs Wellcome Career Development Award to Schumacher and by grants from the Robert A. Welch Foundation and the National Institute of Allergies and Infectious Diseases to Brennan

Advertise in this space for $10 per month. Contact us today.


Related Antibiotics News
Nanostructures lend cutting edge to antibiotics
Inhibition of protein HipA pevents cell dormancy and bacterial persistence
Study on spread of antibiotic resistance between bacteria
Two-component lantibiotic with therapeutic potential discovered
Antibiotic inhibits cancer gene activity
Rapamycin shown to inhibit angiogenesis
Tigecycline, world’s first glycylcycline expanded broad-spectrum antibiotic, launched in UK
FDA Warns of Liver Failure With Telithromycin
What is the optimal duration of antibiotic therapy?
Should children with suspected meningitis be given antibiotics before transfer to hospital?

Subscribe to Antibiotics Newsletter

Enter your email address:


 About Dr. Sanjukta Acharya
This news story has been reviewed by Dr. Sanjukta Acharya before its publication on RxPG News website. Dr. Sanjukta Acharya, MBBS MRCP is the chief editor for RxPG News website. She oversees all the medical news submissions and manages the medicine section of the website. She has a special interest in nephrology. She can be reached for corrections and feedback at [email protected]
RxPG News is committed to promotion and implementation of Evidence Based Medical Journalism in all channels of mass media including internet.
 Additional information about the news article
Co-authors with Schumacher and Brennan are Kevin Piro and Weijun Xu, also of M. D. Anderson's Department of Biochemistry and Molecular Biology; and Sonja Hansen and Kim Lewis, Ph.D., of Northeastern University's Department of Biology and Antimicrobial Discovery Center.

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 41 Comprehensive Cancer Centers designated by the National Cancer Institute. For six of the past nine years, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News and World Report.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)