RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
  Bladder
  Blood
  Bone Cancer
  Brain
  Breast Cancer
  Carcinogens
  Cervical Cancer
  Colon
  Endometrial
  Esophageal
  Gastric Cancer
  Liver Cancer
  Lung
  Nerve Tissue
  Ovarian Cancer
  Pancreatic Cancer
  Prostate Cancer
  Rectal Cancer
  Renal Cell Carcinoma
  Risk Factors
  Skin
  Testicular Cancer
  Therapy
  Thyroid
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
Breast Cancer Channel

subscribe to Breast Cancer newsletter
Latest Research : Cancer : Breast Cancer

   EMAIL   |   PRINT
Interferon-stimulated gene 15 (ISG15), a ubiquitin like protein, is a new therapeutic target for breast cancer

Jan 12, 2012 - 1:44:02 AM , Reviewed by: Dr. Sanjukta Acharya

Dr. Arthur Haas said "Given the crucial role of the ubiquitin/26S proteasome pathway in normal cell homeostasis, one expects that ISG15-induced downregulation of the ubiquitin pathway must contribute to breast tumor cell viability. Concurrently, in this manuscript we demonstrate that ISG15 promotes breast cancer cell migration by inhibiting ubiquitin-mediated degradation of cellular proteins associated with cell motility, invasion and metastasis".


***image1***
 
[RxPG] In a study published in the January 2012 issue of Experimental Biology and Medicine, Dr. Shyamal Desai and her co-investigators report that gene knock-down studies demonstrate that elevated ISG15 pathway results in disruption of the cytoskeletal architecture of breast cancer cells. ISG15 also inhibits degradation of cellular proteins involved in cell motility, invasion, and metastasis, promoting breast cancer cell migration. Interferon-stimulated gene 15 (ISG15), a ubiquitin like protein, is highly elevated in a variety of cancers including breast cancer.

Dr. Desai said "Using ISG15 and UbcH8 gene knocked-down approach, our recent published and unpublished results explicitly demonstrated that the ISG15 pathway inhibits the ubiquitin-mediated proteasome-dependent protein degradation in breast cancer cells. We were the first to recognize this antagonizing effect of ISG15 in cancer cells"; however, others are increasingly coming to the same conclusion in their observations that ISG15 conjugation stabilizes cellular proteins.

Dr. Arthur Haas said "Given the crucial role of the ubiquitin/26S proteasome pathway in normal cell homeostasis, one expects that ISG15-induced downregulation of the ubiquitin pathway must contribute to breast tumor cell viability. Concurrently, in this manuscript we demonstrate that ISG15 promotes breast cancer cell migration by inhibiting ubiquitin-mediated degradation of cellular proteins associated with cell motility, invasion and metastasis".

The authors report that the elevated ISG15 pathway results in disruption of the cytoskeletal architecture effecting actin polymerization and formation of focal adhesions in breast cancer cells. Targeted knockdown of both ISG15 and UbcH8 resulted in reconstitution of the cytoskeletal architecture. Dr. Desai said "Disruption of cellular architecture is a hallmark of cancer. The ISG15 pathway is also elevated in a variety of tumors. Our results therefore reveal that the ISG15 pathway which is aberrantly elevated in tumors could disrupt cell architecture and contribute to breast cancer cell motility". "Because the cellular architecture is conserved and the ISG15 pathway is constitutively activated in tumor cells of different lineages, our observations in breast cancer must hold true for many other tumors".

If ISG15 confers motility to tumor cells in vivo, as suggested in this manuscript, then Dr. Desai concludes that "strategies to decrease ISGylation could provide a therapeutic advantage for patients diagnosed with metastatic tumors overexpressing the ISG15 pathway".

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said that "these intriguing studies by Desai and colleagues suggests that modulation of the ISG15 pathway may provide future therapeutic targets for breast cancer and other metastatic tumors".




Publication: January 2012 issue of Experimental Biology and Medicine
Related Breast Cancer News
Blood test predicts breast cancer recurrence
Interferon-stimulated gene 15 (ISG15), a ubiquitin like protein, is a new therapeutic target for breast cancer
Smoking may have an association with breast cancer in women
Vitamins and calcium supplements appear to reduce the risk of breast cancer
Acupuncture has added benefits in breast cancer patients
Study finds higher risk of cancer recurrence in women with dense breasts
Physical activity after menopause reduces breast cancer
Genes responsible for susceptibility to breast cancer metastasis can be inherited
Oestrogen therapy of benefit in some women with metastatic cancer
Awry protein linked to breast cancer

Subscribe to Breast Cancer Newsletter

Enter your email address:


 About Dr. Sanjukta Acharya
This news story has been reviewed by Dr. Sanjukta Acharya before its publication on RxPG News website. Dr. Sanjukta Acharya, MBBS MRCP is the chief editor for RxPG News website. She oversees all the medical news submissions and manages the medicine section of the website. She has a special interest in nephrology. She can be reached for corrections and feedback at [email protected]
RxPG News is committed to promotion and implementation of Evidence Based Medical Journalism in all channels of mass media including internet.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

Online ACLS Certification

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)