XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
  Breast
  Skin
  Blood
  Prostate
  Liver
  Colon
  Thyroid
  Endometrial
  Brain
  Therapy
  Risk Factors
  Esophageal
  Bladder
  Lung
  Rectal Cancer
  Pancreatic Cancer
  Bone Cancer
  Cervical Cancer
  Testicular Cancer
  Gastric Cancer
  Ovarian Cancer
  Nerve Tissue
  Renal Cell Carcinoma
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Cancer Channel
subscribe to Cancer newsletter

Latest Research : Cancer

   DISCUSS   |   EMAIL   |   PRINT
How platelets help cancer invade other tissues
Dec 16, 2004, 17:25, Reviewed by: Dr.



 
Malignant tumors have the ability to transfer disease from organ to another. The depletion of blood platelets by many mechanisms has been shown to result in a reduction of metastases to lung and bone in experimental tumor transplant models. This effect has long been attributed to platelet-mediated enhancement of tumor cell survival and tumor cell escape from the blood into the surrounding tissue, as well as the development of new blood vessels to support tumor growth. In the December 15 issue of the Journal of Clinical Investigation, Olivier Peyruchaud and colleagues from Universit� Claude Bernard Lyon, France, describe two additional roles of platelets in the metastasis of breast and ovarian cancer cells to the bone. They show that platelets act as: (i) a direct source of lysophosphatidic acid (LPA), which promotes tumor cell division; and (ii) indirect activators of bone breakdown.

The authors demonstrate in mice that tumor cells encourage platelet aggregation and activation and the subsequent release from platelets of LPA. LPA causes tumor cells to release the immune cell�growth stimulants IL-6 and IL-8 into the bone marrow, causing bone breakdown to exceed bone formation. Treatment of these mice after initial bone metastasis with Intergrilin, an inhibitor of platelet aggregation, resulted in decreased circulating LPA levels and a significant reduction in bone metastasis formation. However the authors did not interfere specifically with LPA signaling, leaving open the possibility that this anti-metastatic effect could be due to an LPA-independent pathway.

These findings in addition to other data suggest that platelet inhibition may slow the rate of tumor progression and metastasis. However to date, clinical trials of the antiplatelet agents aspirin and heparin have yielded inconclusive, albeit promising, evidence that platelet inhibition may enhance the survival of cancer patients. One major reason for the difficulty in translating these results into effective anticancer therapies is the need to consider the important role that platelets play in arresting bleeding, for example in the event of a nosebleed or following injury or surgery.

In an accompanying commentary, Gaorav Gupta and Joan Massagu� from Memorial Sloan-Kettering Cancer Center in New York discuss the implications of this study. These authors remind us that "cancer patients receiving cytotoxic chemotherapy who suffer from bleeding due to platelet toxicity are regularly transfused with large numbers of platelets from healthy donors." Leading us to question "[is] this life-saving therapy�simultaneously facilitating metastasis of their cancerous cells?" Gutpa and Massagu� stress that any effective therapies that modulate platelet activity will need to be specific for the pathological tumor cell�platelet interaction, without effecting normal platelet function. Platelet-specific integrin inhibitors like Integrilin fall into this category. The study also suggests that drug-mediated inhibition of platelet-derived LPA and LPA receptors present on tumor cells may be another promising target for reducing or preventing bone metastasis.

 

- December 15 issue of the Journal of Clinical Investigation
 

Full text PDF of TITLE: Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer

 
Subscribe to Cancer Newsletter
E-mail Address:

 



Related Cancer News

Gene Expression Profiling Not Quite Perfected in Predicting Lung Cancer Prognosis
Breast cancer chemotherapy may deterioration in cognitive function
I-ELCAP study: Lung cancer can be detected early with annual low-dose CT screening
Genomic signatures to guide the use of chemotherapeutics
Elderly Breast Cancer Patients May Be Under-Diagnosed And Under-Treated
Listening to the sound of skin cancer
Tissue Geometry Plays Crucial Role in Breast Cell Invasion
Regulatory Approval for New Cotara(R) Brain Cancer Clinical Trial
CDK2/FOXO1 as drug target to Prevent Tumors
Key to lung cancer chemotherapy resistance revealed


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us