XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
  Breast
  Skin
  Blood
  Prostate
  Liver
  Colon
  Thyroid
  Endometrial
  Brain
  Therapy
  Risk Factors
  Esophageal
  Bladder
  Lung
  Rectal Cancer
  Pancreatic Cancer
  Bone Cancer
  Cervical Cancer
  Testicular Cancer
  Gastric Cancer
  Ovarian Cancer
  Nerve Tissue
  Renal Cell Carcinoma
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Cancer Channel
subscribe to Cancer newsletter

Latest Research : Cancer

   DISCUSS   |   EMAIL   |   PRINT
MicroRNA regulates Ras cancer gene
Mar 18, 2005, 23:00, Reviewed by: Dr.

"The discovery of a new aspect of the regulation and targeting of a well-known gene involved with cancer progression will have profound implications as we continue to focus on the causes of tumor development"

 
Research in the laboratory of Assistant Professor Frank J. Slack at Yale University has identified a new way that a familiar gene is regulated in lung cancer, presenting new possibilities for diagnosis and treatment. The work is reported in March issues of the journals Cell and Developmental Cell.

The oncogene Ras is out of control in about 20 percent of cancers where it is over-expressed or activated by mutation. According to Slack, a member of the Yale Cancer Center, it is one of the most identifiable causes in some forms of lung cancer. His team has identified let-7, a natural and separately transcribed RNA that maps to a chromosomal region associated with lung cancer as a regulator of Ras expression.

DNA of plants and animals contains sequences encoding microRNAs, important regulators of development, that control processes determining cell type and cell death.

"The let-7 microRNA regulates Ras by binding to the message for Ras and likely inhibits translation of the Ras protein," said Slack. "The microRNA does not revert a mutated Ras to normal; instead it acts like a brake on an accelerated Ras."

Lung cancer currently has a poor prognosis with less than 15 percent of patients surviving five years. The lungs, however, are relatively accessible for inhalation of potential gene therapy agents. "While this is not likely to cure the cancer," said Slack, "after diagnosis, gene therapy with let-7 may be a way to alleviate or slow it down."

This work arose from Slack's basic research in the department of molecular, cellular and developmental biology on the nematode round worms, C. elegans. He found that these worms require let-7 RNA for normal development to occur. Without it, cells do not stop dividing and fail to differentiate into the normal structures of the worm � instead they make an excess of their cells.

After identifying let-7 as a cell division regulator, Slack's team used bioinformatics and found the relationship to Ras. Let-7 in humans is identical to the sequence in the worm, and both binding site and pathway for Ras are highly conserved.

Tissue from lung cancer tumors, compared with their normal adjacent tissue, had reduced let-7 and increased Ras -- the brakes on Ras were removed in lung tumors.

"The discovery of a new aspect of the regulation and targeting of a well-known gene involved with cancer progression will have profound implications as we continue to focus on the causes of tumor development," said Richard L. Edelson, M.D., director of Yale Cancer Center.
 

- Cell 120: 635-647 (March 2005); Developmental Cell 8: 321-330 (March 2005)
 

http://www.yale.edu/

 
Subscribe to Cancer Newsletter
E-mail Address:

 

Other Yale researchers were Steven M. Johnson, Helge Grosshans and Kristy L. Reinert; collaborators at Ambion, Inc. included Jaclyn Shingara, Mike Byrom, Rich Jarvis, Angie Cheng, Emmanuel Labourier and David Brown. Support for the research came from the Human Frontiers Science Program, the National Institutes of Health and the National Science Foundation.

Related Cancer News

Gene Expression Profiling Not Quite Perfected in Predicting Lung Cancer Prognosis
Breast cancer chemotherapy may deterioration in cognitive function
I-ELCAP study: Lung cancer can be detected early with annual low-dose CT screening
Genomic signatures to guide the use of chemotherapeutics
Elderly Breast Cancer Patients May Be Under-Diagnosed And Under-Treated
Listening to the sound of skin cancer
Tissue Geometry Plays Crucial Role in Breast Cell Invasion
Regulatory Approval for New Cotara(R) Brain Cancer Clinical Trial
CDK2/FOXO1 as drug target to Prevent Tumors
Key to lung cancer chemotherapy resistance revealed


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us