XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
  Breast
  Skin
  Blood
  Prostate
  Liver
  Colon
  Thyroid
  Endometrial
  Brain
  Therapy
   Pharmacotherapy
   Radiotherapy
   Vaccination
  Risk Factors
  Esophageal
  Bladder
  Lung
  Rectal Cancer
  Pancreatic Cancer
  Bone Cancer
  Cervical Cancer
  Testicular Cancer
  Gastric Cancer
  Ovarian Cancer
  Nerve Tissue
  Renal Cell Carcinoma
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Therapy Channel
subscribe to Therapy newsletter

Latest Research : Cancer : Therapy

   DISCUSS   |   EMAIL   |   PRINT
Cysmethynil : A New Anti-Cancer Compound that Blocks the Icmt Protein Activation
Mar 28, 2005, 11:30, Reviewed by: Dr.

"This is the first selective small molecule inhibitor of Icmt, a protein that has been shown to be an important player in keeping a cancer-causing gene called 'Ras' turned on inside cells "

 
Duke Comprehensive Cancer Center scientists have discovered a potential new drug that inhibits destructive cell signals that drive the growth of one-third of all cancers. The scientists showed they could block the growth of cultured colon cancer cells using this new compound, called cysmethynil.

Their finding, reported in the March 22, 2005, issue of Proceedings of the National Academy of Sciences, is the first step toward developing a new class of anti-cancer drugs that block the Icmt protein from activating uncontrolled cell growth, a hallmark of cancer, according to Patrick Casey, Ph.D. Casey is the study's senior investigator and Duke pharmacologist and cancer biologist.

Moreover, said Casey, their discovery is the first to emerge from the Duke Small Molecule Screening Facility, which houses a library of more than 13,000 compounds available for screening promising drugs with potential to fight cancer and other diseases. Using automated robotics, the facility provides the kind of drug discovery capability usually available only to pharmaceutical company scientists.

Duke's new facility is a finalist for one of six $9 million National Institutes of Health (NIH) grants that will create a national network of publicly accessible small molecule facilities and make them available to researchers nationwide.

Duke University has filed a patent application for cysmethynil, Casey said, and intends to shepherd it through the first steps of drug development by testing the compound in animal models of cancer.

The research was supported by grant from the NIH and a Howard Hughes Medical Institute predoctoral fellowship to Casey graduate student Ann M. Winter-Vann, the first author of the study.

"This is the first selective small molecule inhibitor of Icmt, a protein that has been shown to be an important player in keeping a cancer-causing gene called 'Ras' turned on inside cells," said Casey.

Ras is a normal genetic component of the cell, but mutations in the gene can cause it to become stuck in an "on" position, promoting uncontrolled cell growth. Mutations in Ras that permanently activate it have been found in half of all colon cancer and 90 percent of pancreatic cancers, among other cancers.

Casey and his colleagues in Duke's Department of Pharmacology and Cancer Biology have already discovered and developed another class of cancer drugs aimed at inhibiting the processing pathway --the prenylation pathway � that regulates Ras.

Several years ago, Casey's laboratory was one of a handful to unravel how the prenylation pathway works. This accomplishment led pharmaceutical companies to test compounds that block another key player in the pathway, a protein called farnesyltransferase.

Blocking this protein inhibits Ras' ability to send growth-promoting signals inside cells. Several such compounds have shown promise in treating leukemias and lymphomas and are now under consideration for final approval by the U.S. Food and Drug Administration.

Since that time, Casey and his colleagues have been studying another key player in the pathway, the Icmt enzyme. Icmt adds a chemical tag called a "methyl group" to Ras. This methyl tag enables Ras to be directed to its final destination in the cell, from where it can send signals for unchecked growth.

"Ras needs to be at the plasma membrane in order to function," he said. "By preventing Icmt from adding a methyl group, we can effectively shut down Ras' ability to function, stopping it from sending signals for uncontrolled growth."

Initial experiments showed that knocking out the Icmt protein using genetic targeting also inhibited Ras, so the scientists decided to search for an effective and specific molecule that could inhibit Icmt function.

"We were looking for a small molecule that inhibited this enzyme specifically, without interfering with the normal regulation of the cell," said Casey. "What we found was a series of 30 structurally related molecules, and we selected the one with the highest potency � that is cysmethynil."

Once the scientists had identified cysmethynil, they worked with Duke chemist Eric Toone and chemistry graduate student David Gooden to synthesize the molecule and verify its chemical structure. A search of the chemical literature turned up no previous description of the chemical, leading the scientists to believe they had discovered a new chemical compound with a unique biological function.

When the scientists tested the compound's ability to inhibit Ras function in living cells, they found it blocked the ability of colon cancer cells to grow independently in soft agar, a typical test of the cancerous
potential of cells.

"The next step is to test cysmethynil in animal models," said Casey. "We don't know how the compound will be metabolized in living animals, but we are encouraged by our initial results."
 

- March 22, 2005, issue of Proceedings of the National Academy of Sciences
 

Duke Comprehensive Cancer Center

 
Subscribe to Therapy Newsletter
E-mail Address:

 

Other Duke scientists contributing to the research are Rudi A. Baron, Waihay Wong, June dela Cruz, and John D. York.

Contact sources : Patrick Casey Ph.D. , 919-613-8613
[email protected]


Related Therapy News

Genomic signatures to guide the use of chemotherapeutics
CDK2/FOXO1 as drug target to Prevent Tumors
Telomerase inhibitors may revolutionize cancer therapy
First ever shots of the cervical cancer vaccine administered in Queensland
Gleevec can be toxic to the heart
Anti-cancer possibilities seen for certain monoamine oxidase inhibitors
AS101 protects the testis from the effects of paclitaxel
Microbeam Radiation Therapy (MRT) Could Improve Cancer Treatment
Novel EGFR antibody mAb 806 targets tumors but not normal tissues
Oral chemotherapy option soon for cancer


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us