XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
  Breast
  Skin
  Blood
  Prostate
  Liver
  Colon
  Thyroid
  Endometrial
  Brain
  Therapy
  Risk Factors
  Esophageal
  Bladder
  Lung
  Rectal Cancer
  Pancreatic Cancer
  Bone Cancer
  Cervical Cancer
  Testicular Cancer
  Gastric Cancer
  Ovarian Cancer
  Nerve Tissue
  Renal Cell Carcinoma
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Colon Channel
subscribe to Colon newsletter

Latest Research : Cancer : Colon

   DISCUSS   |   EMAIL   |   PRINT
Another molecular player in colon cancer initiation identified
Feb 3, 2005, 00:26, Reviewed by: Dr.



 
Gastric and colorectal cancers account for more than 1 million deaths worldwide every year and several research groups have been working to identify the molecular events that result in the initiation and progression of these tumors. It has been established that interfering with the function of one gene, called Adenomatous Polyposis Coli (APC) has a profound effect on the cells lining the innermost layer of the colon (called the epithelium) and causes them to lose control over their proliferation leading to tumors.

Now Klaus Kaestner from the University of Pennsylvania School of Medicine has headed a study that identifies another molecular player influencing the initiation of colon cancers.

This study will be published in the February 1 issue of the journal Genes and Development.

An animal model with an inactivating mutation within the mouse equivalent of the APC gene displays very similar pathology as seen in human colon cancers and develop tumor growths called polyps in their colons, eventually leading to death. Inactivating the APC gene was found, as in human cells, to cause the accumulation of a protein called beta-catenin in the nuclei of these cells.

Kaestner's group had earlier published research on a transcription factor called Foxl1 that is also expressed in the colon, but in a different layer of cells, adjacent to the epithelium, called the mesenchyme. They had seen that mice that are deficient for the Foxl1 protein show a similar accumulation of the beta-catenin protein in the epithelium layer, yet they do not get cancers. However, combining the Foxl1 deficiency with an inactive APC gene had drastic outcomes. The group compared animals that were partially deficient for APC (containing one normal copy of the APC gene and one mutant inactive copy) in the presence or absence of Foxl1. Both animals developed tumors, however, in the absence of Foxl1, tumor frequency was more than 7-fold higher.

In addition, the animals developed tumors in the stomach. None of the tumors seen in either case were invasive leading to the conclusion that the Foxl1deficiency affects early stages in tumor formation. Additional analysis revealed that the Foxl1 deficiency affected the onset of tumor formation, accelerating them to arise in 1/3rd of the normal time. The authors examined the integrity of the APC gene in these tumor cells and found that more than ninety per cent of the tumors had lost the normal copy of the APC gene and now were completely deficient.

What is the significance of these results on understanding the initiation of colon cancer? A deficiency of Foxl1 in the mesenchymal layer of the colon leads to altered signaling to the epithelium layer and results in increased cell proliferation and turnover of this layer. In people with a genetic predisposition, like those with Familial Adenomatous Polyposis, or environmental stress that generates a spontaneous mutation in the APC gene, mutations in the Foxl1 gene or its targets may dramatically increase the likelihood that the second normal copy of the APC gene is lost or mutated, leading to the initiation of tumor formation.

This study sets a new paradigm for gastrointestinal tumorigenesis, in that genetic events outside the epithelial layer itself have a profound effect on tumor initiation. Thus it appears likely that this study will foster additional research into other mesenchymal genetic modifiers, and into potential therapeutic approaches that affect the signaling between the two cell layers.
 

- This study will be published in the February 1 issue of the journal Genes and Development
 

Cold Spring Harbor Laboratory

 
Subscribe to Colon Newsletter
E-mail Address:

 



Related Colon News

Regular aerobics protects men from colon cancer
Role for MicroRNAs in Oxygenation, Nourishing of Colon Tumors
New genetic test to spotlight heightened bowel cancer risk
$2.6 million in grants for metastatic colon cancer research
NSAIDs don't reduce colorectal cancer risk in chronic smokers
Timing of radiation treatments for colon cancer may need adjusting
How growth hormone therapy can lead to colon polyps
Review study sets treatment standard for elderly with colon cancer
Eating red meat could damage DNA by N-nitrosocompounds
Diet pattern may effect the development of colon cancer


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us