XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
  Breast
  Skin
  Blood
  Prostate
  Liver
  Colon
  Thyroid
  Endometrial
  Brain
  Therapy
  Risk Factors
  Esophageal
  Bladder
  Lung
  Rectal Cancer
  Pancreatic Cancer
  Bone Cancer
  Cervical Cancer
  Testicular Cancer
  Gastric Cancer
  Ovarian Cancer
  Nerve Tissue
  Renal Cell Carcinoma
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Colon Channel
subscribe to Colon newsletter

Latest Research : Cancer : Colon

   DISCUSS   |   EMAIL   |   PRINT
Role of IGF2 in Colon Cancer
Feb 25, 2005, 18:39, Reviewed by: Dr.

"In the mice, loss of imprinting of IGF2 roughly doubles the risk that the genetic mutation will cause a tumor. Double the risk may not seem like much, but this loss of imprinting is common."

 
A team of scientists from the United States, Sweden and Japan has discovered that in mice having a double dose of one protein is sufficient to change the normal balance of cells within the lining of the colon, thereby doubling the risk that a cancer-causing genetic mutation will trigger a tumor there. Roughly 10 percent of people have this double protein dose as well.

In the Feb. 24 online version of Science, the researchers report that mice engineered to have a double dose of insulin-like growth factor 2 (IGF2) develop more so-called precursor cells within the lining of the colon than normal mice. When these mice also carried a colon-cancer-causing genetic mutation, they developed twice as many tumors as those with normal IGF2 levels, the researchers report.

"Both clinically and scientifically, this discovery should expand attention in colon cancer research to earlier events, situations present well before tumors appear," says the study's leader, Andrew Feinberg, M.D., M.P.H., professor of medicine and director of the Center for Epigenetics in Common Human Disease at Johns Hopkins.

"In the mice with a double dose of IGF2, everything is pretty normal except for the extra precursor cells," says Christine Iacobuzio-Donahue, M.D., assistant professor of pathology and oncology. "But when the genetic mutation is present, too, we found a clear cost for what otherwise appears to be a benign effect of extra IGF2."

The team's analysis of colon tissue samples from a dozen or so Johns Hopkins patients with suspected colon cancer suggests that IGF2's effect in people may be similar, the researchers report. A larger study of samples from patients with and without suspected colon cancer is underway, Feinberg notes.

In the mice -- as well as in about 30 percent of colon cancer patients and 10 percent of the general population -- the extra IGF2 stems not from a genetic problem, or mutation, but an "epigenetic" problem that improperly turns on the copy of the IGF2 gene that should remain off.

Unlike most genes, the copy of IGF2 that should be silent depends only on which parent it came from, a situation called genomic imprinting. For IGF2, the copy inherited from the mother is always supposed to be turned off.

In the mice and in some people, however, cells lack the epigenetic "marks" that sit on the DNA and keep the maternally inherited copy turned off. As a result, cells make a double dose of the IGF2 protein and are said to have "loss of imprinting" of IGF2.

Although Feinberg and others have already noted an association between loss of imprinting of IGF2 and colon cancer in people, the current experiments were designed to find out whether the loss of imprinting is involved in cancer's development or just in its progression.

"Most researchers, including me, expect epigenetic differences to influence progression -- whether a tumor would grow slowly or quickly, or whether it would spread," says Feinberg. "But, in this case, our results show that loss of imprinting of IGF2 contributes to colon cancer's development in the mice. It doesn't cause tumors directly, but it creates an environment which is ripe for cancer to start."

Because precursor cells in the colon's lining had been identified as a likely starting point for tumors, Feinberg and his team tossed a cancer-causing genetic mutation into the mix. The IGF2 mice were crossed with mice carrying a mutation in a gene called APC, which had been tied to colon cancer by researchers studying families with excessive growths, or polyps, in the colon.

Mice with extra IGF2 and the APC mutation developed twice the number of tumors as mice with the mutation but whose IGF2 levels were normal. The tumors grew at the same rate in both sets of mice, suggesting that more tumors get started in the mice with extra IGF2, notes Feinberg.

"In the mice, loss of imprinting of IGF2 roughly doubles the risk that the genetic mutation will cause a tumor," says postdoctoral fellow Atsushi Kaneda, Ph.D. "Double the risk may not seem like much, but this loss of imprinting is common."

The researchers' mice mirror two situations in people because the double dose of IGF2 was accomplished in two ways. One set of mice, obtained from Shirley Tilghman at Princeton, have a double dose of IGF2 because they are missing another gene, H19, whose sequence overlaps the region that usually shuts off one copy of IGF2. As a result, these mice lack H19 and have double IGF2.

To isolate the effect of the extra IGF2, Rolf Ohlsson at the Uppsala University, Sweden, developed a set of mice missing only the control region for IGF2; their H19 gene was intact. These mice likely mimic the 30 percent of colon cancer patients and 10 percent or so of the human population who have loss of imprinting of IGF2.

Only the Princeton mice have been crossed with the APC mice. Both the Princeton and the Swedish mice have the extra precursor cells in the lining of the colon, suggesting the effect on cancer development would be similar.

Co-author Dan Longo, M.D., of the National Institute on Aging notes that the mice with both double IGF2 and the APC mutation should be a useful animal model to evaluate the impact of colon cancer prevention strategies, including dietary interventions and targeted drugs.
 

- In the Feb. 24 online version of Science, the researchers report that mice engineered to have a double dose of insulin-like growth factor 2 (IGF2) develop more so-called precursor cells within the lining of the colon than normal mice.
 

sciencemag.org

 
Subscribe to Colon Newsletter
E-mail Address:

 

The researchers were funded by the National Cancer Institute, the National Institute on Aging, The Uehara Memorial Foundation and the Swedish Cancer Research Foundation. Authors on the paper are Kaneda, Feinberg, Iacobuzio-Donahue, Takashi Sakatani and Sten de Boom Witzel of Johns Hopkins; Mark Carter, Minoru Ko and Dan Longo of the National Institute on Aging; Hideyuki Okano of Keio University School of Medicine, Tokyo, Japan; and Ohlsson of Uppsala University.

Related Colon News

Regular aerobics protects men from colon cancer
Role for MicroRNAs in Oxygenation, Nourishing of Colon Tumors
New genetic test to spotlight heightened bowel cancer risk
$2.6 million in grants for metastatic colon cancer research
NSAIDs don't reduce colorectal cancer risk in chronic smokers
Timing of radiation treatments for colon cancer may need adjusting
How growth hormone therapy can lead to colon polyps
Review study sets treatment standard for elderly with colon cancer
Eating red meat could damage DNA by N-nitrosocompounds
Diet pattern may effect the development of colon cancer


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us