XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
  Breast
  Skin
  Blood
  Prostate
  Liver
  Colon
  Thyroid
  Endometrial
  Brain
  Therapy
  Risk Factors
  Esophageal
  Bladder
  Lung
  Rectal Cancer
  Pancreatic Cancer
  Bone Cancer
  Cervical Cancer
  Testicular Cancer
  Gastric Cancer
  Ovarian Cancer
  Nerve Tissue
  Renal Cell Carcinoma
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Prostate Channel
subscribe to Prostate newsletter

Latest Research : Cancer : Prostate

   DISCUSS   |   EMAIL   |   PRINT
An Adoptive Transfer Gene Therapy Technique to Deal with Metastatic Prostate Cancer
Mar 13, 2005, 08:52, Reviewed by: Dr.

TRAMP-C2 prostate cancer cells produce large amounts of TGF-beta, and possess such potent immunosuppressive power that regular CD8+ T cells are unable to infiltrate tumor tissues, Lee explained.

 
Chung Lee, John T. Grayhack, M.D., Professor of Urology at Northwestern University Feinberg School of Medicine, and his laboratory group described the adoptive transfer gene therapy technique in the March issue of Cancer Research.

Lee is also a researcher at The Robert H. Lurie Comprehensive Cancer Center of Northwestern University. The researchers first rendered immune cells known as CD8+ T cells insensitive to transforming growth factor beta ( TGF-beta ), a powerful, naturally occurring substance in the body that enables cancer cells to evade surveillance by the body's immune system. The immunosuppressive effect of TGF-beta in cancer progression is well established.

After inserting a mutated form of the TGF-beta receptor into CD8+ T cells, Lee and associates transplanted the tumor-specific immune cells into mice that had been given a particularly aggressive form of prostate cancer, called TRAMP-C2.

TRAMP-C2 prostate cancer cells produce large amounts of TGF-beta, and possess such potent immunosuppressive power that regular CD8+ T cells are unable to infiltrate tumor tissues, Lee explained.

The mice received a single injection of tumor-reactive TGF-beta-insensitive CD8+ T cells, tumor-specific TGF-beta-sensitive CD8+ T cells or untreated CD8+ T cells at three ( early cancer ), seven or 21 days ( advanced cancer ) after they had been injected with the prostate cancer cells.

Lee and co-researchers found that the tumor-reactive TGF-beta-insensitive CD8+ T cells infiltrated prostate cancer tumors and effectively destroyed the TRAMP-C2 cells.

Moreover, results showed that the CD8+ T cells showed five-fold more tumor-killing activity than that of TGF-beta-sensitive CD8+ T cells and 25-fold more tumor-killing activity over that of untreated CD8+ T cells.

Mice that received adoptive transfer of tumor-reactive TGF-beta-insensitive CD8+ T cells following injection of tumor cells showed no or little evidence that cancer had spread in the body.

Importantly, mice that received TGF-beta-insensitive CD8+ T cells did not develop systemic autoimmune disease, as had been the case in earlier studies by Lee and other researchers.

"To the best of our knowledge, studies to test this concept have not been attempted before," Lee said.

In summary, these CD8+ T cells were specifically reactive against tumor tissues. Second, they were insensitive to TGF-beta. The two properties endowed the CD8+T cells with the ability to infiltrate tumor tissues and function as potent effectors against tumor cells. Finally, these cells were able to persist in tumor-bearing hosts but not in those that are cancer free.

The findings of the Northwestern study provide a proof of principle that an adoptive transfer of tumor-reactive TGF-beta-insensitive CD8+ T cells may warrant consideration for the treatment of advanced tumors, Lee said.
 

- March issue of Cancer Research
 

Northwestern University

 
Subscribe to Prostate Newsletter
E-mail Address:

 

Researchers from Northwestern University; the National Cancer Institute; Massachusetts Institute of Technology; the Fred Hutchinson Cancer Research Center; and Peking University collaborated on the study, which was supported by grants from the U.S. Department of Defense and the National Institutes of Health.

Related Prostate News

Gene therapy study takes aim at prostate cancer
Pain associated with prostatic biopsy is related to the site biopsied
Admixture mapping reveals locus for prostate cancer risk
Diet modification and stress reduction may attenuate progression of prostate cancer
Prostatic Irradiation Doesn�t Lead To Any Appreciable Increase in Rectal Cancer Risk
Pomegranate Juice Slows PSA Acceleration Rate
Pomegranate juice could kill cancer cells
Early estrogen exposure leads to later prostate cancer risk
JHDM2A enzyme induced H3K9 demethylation offers new look at male hormone regulation
What is the appropriate age to stop prostate cancer screening?


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us