RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
  CAD
  CHF
  Clinical Trials
  Hypertension
  Myocardial Infarction
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
CAD Channel

subscribe to CAD newsletter
Latest Research : Cardiology : CAD

   EMAIL   |   PRINT
Pericytes from human leg veins may help with recovery after a myocardial infarction

Aug 27, 2011 - 7:15:09 PM , Reviewed by: Dr. Sanjukta Acharya

***image1***
 
[RxPG] Stem cell therapies promise to regenerate the infarcted heart through the replacement of dead cardiac cells and stimulation of the growth of new vessels. New research has found the transplantation of stem cells that reside in human veins can help in the recovery of a heart attack. The findings could lead, in the next few years, to the first human clinical trial.

The study, led by Professor Paolo Madeddu, Chair of Experimental Cardiovascular Medicine in the School of Clinical Sciences at the University of Bristol and colleagues in the Bristol Heart Institute, is published online in Circulation Research: Journal of the American Heart Association.

The study, funded by the British Heart Foundation (BHF) and a National Institute for Health Research (NIHR) grant, looked at whether human mural cells, known to scientists as pericytes, cells that stay around, can stabilise blood vessels after a heart attack.

The researchers, using a mouse model, have demonstrated for the first time that pericytes expanded from redundant human leg veins are able to stimulate new blood vessels (neovascularization) and help with the recovery after a heart attack.

The study found that upon transplantation pericytes relocate around the vessels of the peri-infarct zone and establish with them physical contacts allowing the transfer of genetic material, microRNA-132 (miR-132). MicroRNAs are small non-coding RNA sequences that modulate the expression of genes by binding to messenger-RNA and inhibiting it. One microRNA can inhibit many genes simultaneously. The study shows that the transfer of miR-132 from pericytes to endothelial cells inhibits a gene that acts as a negative regulator of cell growth. This unlashes endothelial cell proliferation and the formation of new vessels.

Professor Madeddu said: "Although bone marrow cell therapies dominate today, continued research on other types of stem cells is mandatory to achieve optimal treatment of cardiovascular disease.

"Human pericytes could be an invaluable source for future applications of cardiovascular regenerative medicine."

The researchers demonstrated that transplanted pericytes relocate around and support the growth of blood vessels in the heart, suggesting an unusual growth of these cells is instrumental to therapeutic benefit. The physical contact between pericytes and resident endothelial cells may strengthen the nascent vascularization, thus reducing micro-vascular permeability and myocardial oedema, which are acknowledged to have a negative impact on cardiac function.

The discovery that pericytes use microRNAs to communicate with neighbouring cells reveals a new mechanism used by these cells to influence vascular function. Likewise, pericytes can sense signals from the endothelium and communicate biochemical information to surrounding tissue.

Dr Helene Wilson, Research Advisor at the BHF, which co-funded the study, said: "This exciting discovery is one more step towards mending broken hearts. It shows that 'one man's trash could be another's treasure' – using cells from leftover vein normally binned after heart bypass surgery, to try to repair heart damage in mice.

"While it's early days, the study shows that pericytes may have potential to help repair the heart after a heart attack. This is a vital goal for preventing heart failure, which currently affects more than 750,000 people in the UK and has a worse prognosis than many cancers."




Publication: Published online in Circulation Research: Journal of the American Heart Association
Related CAD News
Pericytes from human leg veins may help with recovery after a myocardial infarction
No difference in graft patency between radial and saphenous vein grafts in CABG procedures
Nanoparticles - possible alternative to drug eluting stents
Heart stem/progenitor cells improve mouse heart function after a heart attack
Delayed enhancement cardiovascular magnetic resonance to detect non-Q wave heart attacks
Post-arrest survival better in high volume hospitals
New European guidelines on the management of ST segment elevation myocardial infarction
Bivalirudin during primary angioplasty better than heparin and glycoprotein IIb/IIIa inhibitors (GPI).
Intermittent hypoxic treatment for reduced myocardial infarction and lethal arrhythmias
MDCT accurate in detecting stenosis in calcified coronary artery plaque

Subscribe to CAD Newsletter

Enter your email address:


 About Dr. Sanjukta Acharya
This news story has been reviewed by Dr. Sanjukta Acharya before its publication on RxPG News website. Dr. Sanjukta Acharya, MBBS MRCP is the chief editor for RxPG News website. She oversees all the medical news submissions and manages the medicine section of the website. She has a special interest in nephrology. She can be reached for corrections and feedback at [email protected]
RxPG News is committed to promotion and implementation of Evidence Based Medical Journalism in all channels of mass media including internet.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

Online ACLS Certification

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)