XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
  Reproduction
 Feature
 Odd Medical News
 Climate
Search

Last Updated: Nov 18, 2006 - 1:55:25 PM

Evolution Channel
subscribe to Evolution newsletter

Special Topics : Evolution

   DISCUSS   |   EMAIL   |   PRINT
Parsing the Functional Fields of the Auditory Cortex
Jun 23, 2006 - 12:43:00 AM, Reviewed by: Dr. Priya Saxena

"With functional maps of both monkey and human auditory cortex, researchers can better understand how the specialized auditory fields evolved, ultimately offering insights into the evolution of human language"


 
No self-respecting concertgoer of a certain era would consider wearing earplugs at a show, but that was long before Pete Townsend and other rock icons spoke out about the risk of deafness. Today, most people recognize that high-intensity noise causes hearing loss—except maybe for those iPod users who routinely blast earsplitting music straight into their brains.

Blaring volume causes deafness by destroying sound-responsive hair cells, but it's unclear how these auditory assaults affect the brain's auditory system. Much of the auditory cortex is organized by sound frequency, but neuroscientists are still figuring out the extent of the spatial organization of frequency-selective neurons and how each auditory field contributes to sound perception. While neurophysiological studies have characterized the functional properties of certain auditory cortical fields (by recording the electrical activity from individual neurons), anatomical studies have identified other fields that had not been functionally characterized.

A new study by Christopher Petkov, Nikos Logothetis, and colleagues fills in some of these gaps by using high-resolution functional magnetic resonance imaging (fMRI) on macaque monkeys presented with acoustic stimuli. The researchers used the anatomical and neurophysiological data to see how the fMRI data compared with the already described auditory cortical fields. With a better sense of how to interpret the functional imaging data, they could use fMRI to probe the functional properties of uncharacterized auditory fields. This approach allowed them to show the functional organization of 11 discrete auditory fields in the primate auditory cortex—an important step toward understanding how these fields operate together to shape what the primate listener perceives of its acoustical environment.

Petkov et al. first used a broad spectrum of sound frequencies to globally activate the monkeys' auditory cortex. (Six anesthetized monkeys and one monkey trained to stay still were placed in fMRI scanners while presented with acoustical stimuli.) Next, they used low- and high-frequency sounds to identify regions with selectively tuned neurons. Based on predictions that auditory fields follow an alternating pattern of high to low frequency along a posterior to anterior direction, they expected fMRI activity to follow the same pattern—which it did. This now “grounded” frequency gradient allowed them to match the rest of the activity patterns that they observed with other auditory fields. Significantly, they matched an alternating pattern of high- and low-frequency selective regions with three fields in the primary auditory cortex, or auditory “core” fields: A1, R, and RT. These core fields are thought to be surrounded by seven or eight so-called “belt” (non-primary) fields. However, neurophysiological data on RT and many of the belt fields are scant, making it unclear how many functional fields actually exist.

It's thought that auditory fields in the core are tuned to simple sounds, like single-frequency tones, while fields in the belt respond to complex sounds. To better locate activity in the belt regions, Petkov et al. also studied brain responses to more-complex sounds. The results included frequency selectivity patterns consistent with known patterns for four belt fields that had previously been studied neurophysiologically and provided a base outline for the other fields—basically functionally tessellating the monkey auditory cortex. Petkov et al. then took advantage of evidence that tones produce a stronger response in the core than they do in the belt fields to outline a border between the core and belt, which helped them to further resolve the position of the core relative to the belt fields.

The extensive patterns of frequency gradients indicated that the three core regions were surrounded by eight belt fields, four on each side, supporting anatomical evidence for about a dozen auditory fields. The researchers then went on to show that neurons in the belt fields responded preferentially to sounds with a broad frequency spectrum—in other words, more complex sounds that would have some of the properties of natural sounds. These results fall in line with a model of hierarchical auditory processing in which the core operates during the initial stages of auditory cortex processing, contributing to a frequency analysis of the sounds in the environment. The belt fields function at a higher level to deal with more-complex sounds by integrating sound frequencies. The challenge now is to understand how each of the many fields contributes toward and interacts with others to shape the perception of primates in their typically opulent acoustical—and multisensory—environments.

This study underscores the value of pooling data from different experimental approaches to study something as intricate as the brain. With this high-resolution functional MRI map of the monkey auditory cortex, researchers can now use both fMRI and neurophysiological techniques to refine each field's particular role within the primate auditory cortex. The map will also guide efforts to better understand the functional organization of the human auditory system—information that could certainly identify the impact of peripheral hearing loss on this part of the auditory system. And with functional maps of both monkey and human auditory cortex, researchers can better understand how the specialized auditory fields evolved, ultimately offering insights into the evolution of human language.
 

- Gross L (2006) The Tessellated Monkey: Parsing the Functional Fields of the Auditory Cortex. PLoS Biol 4(7): e245
 

Read Research Article

 
Subscribe to Evolution Newsletter
E-mail Address:

 

written by Liza Gross

DOI: 10.1371/journal.pbio.0040245

Published: June 20, 2006

Copyright: © 2006 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License


Related Evolution News
Improved Sense of Smell Produced Smarter Mammals
'Primodial Soup' theory for origin of life rejected in paper
Human species could have killed Neanderthal man
History, geography also seem to shape our genome
Artificial human sperm could make men redundant: experts
New Insights Into the Nature of Pride as a Social Function
Girls Select Partners Who Resemble Their Dads - Research
Study of protein folds offers insight into metabolic evolution
Is Sex Necessary for Evolution?
Indians make one major human race: US study


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us