RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
  Diabetes
   Insulin Resistance
   NIDDM
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
NIDDM Channel

subscribe to NIDDM newsletter
Latest Research : Endocrinology : Diabetes : NIDDM

   EMAIL   |   PRINT
Persons at risk for type 2 diabetes have lower rate of cellular energy production

Sep 5, 2005 - 1:41:00 PM
This also points to a dramatic defect in insulin signaling and may explain the observed abnormalities in insulin-stimulated power production in the insulin-resistant study subjects.

 
[RxPG] The rate of insulin-stimulated energy production is significantly reduced in the muscles of lean, healthy young adults who have already developed insulin resistance and are at increased risk of developing diabetes later in life, according to a Yale School of Medicine study.

The new research by Gerald Shulman, M.D., professor of internal medicine, endocrinology, and senior author of the study, indicates that a decreased ability to burn sugars and fats efficiently is an early and central part of the diabetes problem. The new data also suggest that the basic defect lies within the mitochondria, which are the energy factories inside cells that produce most of the chemical power needed to sustain life.

The young adults studied by the research team are the offspring of parents who have type 2 diabetes, adding support to the idea that the risk can be inherited and that the problem begins well before diabetes symptoms become evident. The researchers observed that the mitochondria in the subjects' muscle cells responded poorly to insulin stimulation. Normal mitochondria react to insulin by boosting production of an energy-carrying molecule, ATP, by 90 percent. But the mitochondria from the insulin-resistant people they tested only boosted ATP production by five percent.

Among their findings was also evidence for a severe reduction in the amount of insulin stimulated phosphorus transport into the muscle cells of the insulin-resistant participants. This also points to a dramatic defect in insulin signaling and may explain the observed abnormalities in insulin-stimulated power production in the insulin-resistant study subjects. Phosphorus is a key element in the mithochondrion's complex energy-production process.



Publication: PLoS Medicine 2: www.plosmedicine.org (September 2005)
On the web: Yale University 

Advertise in this space for $10 per month. Contact us today.


Related NIDDM News
Data support role for adult spleen cells in regeneration of beta cells
Researchers reveal mechanisms behind Thiazolidinediones in type 2 diabetes
High-fat diet supresses GnT-4a activity to cause type 2 diabetes
Low blood glucose levels may complicate gastric bypass surgery
Muraglitazar found to increase adverse cardiovascular events
Insulin's role in blocking release of energy
TORC2 - Key regulator of blood glucose levels discovered
Panel Recommends Muraglitazar for the Treatment of Type 2 Diabetes
Persons at risk for type 2 diabetes have lower rate of cellular energy production
Sirt1 protein enhances the secretion of Insulin

Subscribe to NIDDM Newsletter

Enter your email address:


 Additional information about the news article
The co-authors were Kitt Petersen and Sylvie Dufour.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)