RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Feb 19, 2013 - 1:22:36 AM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Antibiotic contamination a threat to humans and the environment

Oct 15, 2012 - 4:00:00 AM
The marine sediment bacteria being studied are also important from a global perspective as they metabolise both nitrogen and carbon, which are linked to both eutrophication and climate problems. A key aspect is also that resistance genes can be transferred between bacteria.

 
[RxPG] Researchers from the University of Gothenburg, Sweden, spend August in Sisimiut on the west coast of Greenland studying the prevalence of antibiotic resistance and the effects of antibiotic emissions on communities of bacteria living in marine sediments. More specifically, they were investigating how communities of bacteria in sediment and clay on the seabed are affected by exposure to antibiotics.

We know very little about what happens to antibiotics that end up in the ocean, but several substances can accumulate in sediments where biodegradation occurs extremely slowly, says researcher Maria Granberg.

More than 10,000 tonnes of antibiotics are consumed in Europe each year, and 30-60% pass through animals and humans completely unchanged. The different substances then reach the ocean via hospitals, municipal sewage, fish farms and run-off from agriculture and landfills.

The research group from the University of Gothenburg are focusing on the potential effects of accumulating antibiotics in the seabed.

Our aim is to document the sea's natural microbial structure and function as well as resistance patterns, so that we can determine if and in what way things change as a result of human activity, says Maria Granberg.

Greenland is home not only to areas of very clean water, the like of which just does not exist in Sweden, but also highly polluted water. As such, it is an excellent location for studying environmental impacts.

Greenland has no sewage treatment whatsoever, which means that waste water from inhabited areas is discharged straight into the sea, says Maria Granberg. So Greenland is home to both very clean and very polluted waters, which is great for comparing environmentally pristine areas with polluted ones.

The soft sediments on the seabed act as a reservoir for hard-to-break-down substances that are released into the environment. Even substances that are not discharged directly into the sea gradually find their way there from the land and air via rainwater. This means that antibiotics can affect marine sediment ecosystems over a long period, with detrimental effects on natural marine communities of bacteria, among other things.

The presence of antibiotics in the marine environment is worrying as it can result in widespread resistance to antibiotics in marine bacteria with unknown consequences for the spread of resistance genes to bacteria that can reach humans through the consumption of seafood and fish.

The marine sediment bacteria being studied are also important from a global perspective as they metabolise both nitrogen and carbon, which are linked to both eutrophication and climate problems. A key aspect is also that resistance genes can be transferred between bacteria.

We know very little about how antibiotics affect natural systems and how antibiotic resistance develops and spreads in these systems, says Maria Granberg. This knowledge is, however, vital if we are to identify the sources of, and understand, the mechanisms behind the development of antibiotic resistance, which constitutes a threat to both the functioning of ecosystems and human health.



Related Latest Research News
Bone loss associated with increased production of ROS
Sound preconditioning prevents ototoxic drug-induced hearing loss in mice
Crystal methamphetamine use by street youth increases risk of injecting drugs
Johns Hopkins-led study shows increased life expectancy among family caregivers
Moderate to severe psoriasis linked to chronic kidney disease, say experts
Licensing deal marks coming of age for University of Washington, University of Alabama-Birmingham
Simple blood or urine test to identify blinding disease
Physician job satisfaction driven by quality of patient care
Book explores undiscovered economics of everyday life
Gene and stem cell therapy combination could aid wound healing

Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)