Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT

Bold idea for 'big data'


Sep 20, 2013 - 4:00:00 AM

 

Computer networking researchers at Rice University have a new idea for how to handle the mountains of data piling up in the labs of their fellow scientists around campus: Create a customized, energy-efficient optical network that can feed rivers of data to Rice's supercomputers.

The new network is called BOLD -- short for Big data and Optical Lightpaths-Driven Networked Systems Research Infrastructure -- and it's about to become a reality, thanks to a new grant from the National Science Foundation.

Advances in computing and sensing technologies have led to a similar problem across many disciplines in science and engineering today, said BOLD principal investigator T.S. Eugene Ng, associate professor of computer science and of electrical and computer engineering at Rice. Experiments produce mountains of data, and there is often no efficient way to process that data to make discoveries and solve problems.

From a computing infrastructure perspective, the challenge goes beyond just moving data, Ng said. We also need to develop transformative ideas in the network control software, operating systems and applications so that they can keep up with a faster network. Above all, for this network design to be appealing to industry, it has to be energy-efficient, scalable and nonintrusive to the end user.

BOLD will take advantage of optical data-networking switches, which have much higher capacity than typical electronic switches that are used mostly in Internet data centers. Optical switches are nothing new, but because of subtle differences in the way electronic and optical switches operate, the two technologies are not interchangeable.

There's a trade-off, Ng said. Optical networking devices consume very little power and can support enormous data rates, but they must first be configured, for example, by moving microelectromechanical mirrors into position, to establish a circuit. Electronic switches don't have moving parts, so they don't have that pesky delay.

BOLD will be a hybrid network that combines both electronic and optical switches. It will also contain something new: a type of optical switch without the moving parts -- and the delays -- of traditional switches. These new silicon-photonic switches will be built in the laboratory of co-principal investigator (co-PI) Qianfan Xu, assistant professor of electrical and computer engineering at Rice, who specializes in creating ultracompact optical devices on chips.

To make use of these three types of technology, we need an intelligent layer that can analyze data flow and demand, all the way up to the application layer, and dynamically allocate network resources in the most efficient way, Ng said.

The task of optimizing network design and performance will fall to Ng and co-PIs Alan Cox and Christopher Jermaine, both associate professors of computer science at Rice. Computational mathematician Bill Symes, also a co-PI, will help with both algorithm design and with testing how much BOLD can improve performance on big data problems.

Symes, the Noah Harding Professor of Computational and Applied Mathematics and professor of Earth science, directs the Rice Inversion Project (TRIP), an industry-funded consortium that solves complex seismic data processing challenges. For example, one type of operation called adjoint state computation, which is used in 3-D seismic analyses, requires comparing two time-dependent simulations -- one running forward in time and the other running backward. This type of computation, which is also used in aircraft design and meteorological research, routinely generates tens to hundreds of terabytes of intermediate data that must be loaded, cached, recalled, modified and saved many times over. For a sense of scale, 10 terabytes of data is about the size of the entire print collection of the Library of Congress.

Ng said adjoint state computations are just one example of the extremely demanding data-intensive computations that BOLD can help streamline. The NSF grant runs for three years, but Ng said he hopes BOLD will improve the performance of computationally intensive research at Rice for years to come.

Rice's Ken Kennedy Institute for Information Technology helped facilitate the BOLD collaboration as part of its efforts to address ongoing challenges in computational science. Rice Information Technology's Networking, Telecommunications and Data Center group and the Rice IT Research Computing Support Group will help develop and support the BOLD network.


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

Online ACLS Certification

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)