RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Jun 21, 2013 - 3:38:17 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Disney Research creates techniques for high quality, high resolution stereo panoramas

Jun 21, 2013 - 4:00:00 AM
The team found that their techniques for correcting problems in 360-degree stereo panoramas were robust and could apply to other sorts of panoramas, such as linear panoramas where, instead of rotating on a fixed base, a camera is mounted on a car or otherwise moves in a straight line.

 
[RxPG] Stereoscopic panoramas promise an inviting, immersive experience for viewers but, at high resolutions, distortions can develop that make viewing unpleasant or even intolerable. A team at Disney Research Zurich has found methods to correct these problems, yielding high-quality panoramas at megapixel resolutions.

The researchers will present findings related to their so-called Megastereo project at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 25-27, in Portland, Oregon.

Using software to digitally stitch overlapping images together into large panoramas has become popular and commonplace, with stitching tools available even in some consumer cameras. Methods for creating stereo panoramas that add the impression of depth to standard 2D panoramas also have been developed, but problems arise when applied to high resolution images.

Images captured at higher resolution and quality often pose novel challenges, explained Alexander Sorkine-Hornung, research scientist at Disney Research Zurich. When such images are stitched into a stereo panorama, the results may be buildings that seem to sway wildly or expand and contract as perspective shifts. Likewise, people or objects that look three-dimensional from one perspective may appear flat as the line of sight changes.

The problems arise when left eye/right eye parallax views are introduced in a panorama to create the impression of depth. Such a panorama could be created using two cameras that capture images for each eye, but more commonly a 360-degree panorama is captured with a single, rotating camera. By mounting the camera on an offset arm, it's possible to capture images at varying centers of projection, so that a stereoscopic image can be produced by stitching together specific strips from the input views. But artifacts such as visible seams between photos that might be bearable in a regular panorama can lead to an intolerable experience when viewing stereo panoramas at high resolutions. For instance, the wide angle lenses typically used to create panoramas make objects near the edges of images appear larger than those in the center. When such images are stitched together in a horizontal stereo panorama, it can create vertical parallax that causes buildings or other objects at the top of the panorama to tilt or sway as the viewer's perspective changes.

The Disney Research team developed methods for correcting the optical distortion of the wide angle lenses, as well as correcting less-than-perfect camera orientations, such as when images are captured with a handheld camera. Other problems relate to visible seams between images that have been stitched together, such as lines or walls that should be straight but appear wavy or crooked. One reason for such problems is that cameras capture light rays from only a limited amount of pixels per view as well as a limited number of camera viewpoints. Simply capturing more and higher resolution images usually isn't feasible and, more importantly, doesn't fully resolve the issues, Sorkine-Hornung said. To counteract the root problem, the team developed an optical flow-based upsampling method, which interpolates what light rays are missing in between.

The team found that their techniques for correcting problems in 360-degree stereo panoramas were robust and could apply to other sorts of panoramas, such as linear panoramas where, instead of rotating on a fixed base, a camera is mounted on a car or otherwise moves in a straight line.

In addition to Sorkine-Hornung, the team included Christian Richardt, Yael Pritch and Henning Zimmer, all of Disney Research Zurich; Zimmer also is a post-doctoral researcher at ETH Zurich and Richardt is a post-doctoral researcher in the REVES group at INRIA Sophia-Antipolis in France. More information about the study, including a video, is available at



Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)