From rxpgnews.com

Latest Research
'Holy Grail' of hearing: True identity of pivotal hearing structure is revealed
Sep 5, 2007 - 3:59:37 AM

Our ability to hear is made possible by way of a Rube Goldberg-style process in which sound vibrations entering the ear shake and jostle a successive chain of structures until, lo and behold, they are converted into electrical signals that can be interpreted by the brain. Exactly how the electrical signal is generated has been the subject of ongoing research interest.

In a study published in the September 6 issue of the journal Nature, researchers have shed new light on the hearing process by identifying two key proteins that join together at the precise location where energy of motion is turned into electrical impulses. The discovery, described by some scientists as one of the holy grails of the field, was made by researchers at the National Institute on Deafness and Other Communication Disorders (NIDCD), one of the National Institutes of Health (NIH), and the Scripps Research Institute in La Jolla, CA.

“This team has helped solve one of the lingering mysteries of the field,” says James F. Battey, Jr., M.D., Ph.D., director of the NIDCD. “The better we understand the pivotal point at which a person is able to discern sound, the closer we are to developing more precise therapies for treating people with hearing loss, a condition that affects roughly 32.5 million people in the United States alone.”

When a noise occurs, such as a car honking or a person laughing, sound vibrations entering the ear first bounce against the eardrum, causing it to vibrate. This, in turn, causes three bones in the middle ear to vibrate, amplifying the sound. Vibrations from the middle ear set fluid in the inner ear, or cochlea, into motion and a traveling wave to form along a membrane running down its length. Sensory cells (called hair cells) sitting atop the membrane “ride the wave” and in doing so, bump up against an overlying membrane. When this happens, bristly structures protruding from their tops (called stereocilia) deflect, or tilt to one side. The tilting of the stereocilia cause pore-sized channels to open up, ions to rush in, and an electrical signal to be generated that travels to the brain, a process called mechanoelectrical transduction.

Most scientists believe that the channel gates are opened and closed by microscopic bridges—called “tip links”—that connect shorter stereocilia to taller ones positioned behind them. If scientists could determine what the tip links are made of, they’d be one step closer to understanding what causes the channel gates to open. This is no easy feat, however, because stereocilia are extremely small, scarce, and difficult to handle. Several proteins had been reported to occur at the tip link in earlier studies, but results have been conflicting to this point.



All rights reserved by RxPG Medical Solutions Private Limited ( www.rxpgnews.com )