RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT

MRSA outbreak mapped by DNA sequencing


Nov 13, 2012 - 5:00:00 AM

 

The technique allowed researchers to map and control an MRSA outbreak in a special care baby unit (SCBU) much more effectively than traditional infection control techniques alone would have allowed, leading to hopes that in future, the management of MRSA and other harmful bacterial infections could be vastly improved by the routine use of DNA sequencing technologies.

Researchers from the Wellcome Trust Sanger Institute, the University of Cambridge and Cambridge University Hospitals initially performed a type of DNA sequencing known as whole-genome sequencing on MRSA isolates taken from 12 babies known to have been carrying MRSA during a 6 month period in 2011.

When the MRSA infections first arose, an infection-control team working in the hospital suspected that the cases were linked, but this could not be proven using conventional methods to track and characterise outbreaks, nor was it clear how the infection was spreading and what its source might be. In an attempt to halt the spread of infection, the infection control team recommended standard measures of decolonisation treatment to eradicate MRSA from carriers and a deep clean of the ward where the infections had occurred.

When the scientists retrospectively performed DNA sequencing on these MRSA isolates, they were able to confirm that the MRSA strains were closely related, and that the MRSA cases observed were therefore part of an outbreak. Moreover, by widening their analysis to include samples from parents and visitors to GP's surgeries, they were able to determine that the outbreak had spread into the community, infecting twice as many people as previously suspected.

While this retrospective analysis was taking place, the hospital infection-control team identified a new case of MRSA carriage in the special care baby unit, more than 2 months after the last MRSA-positive patient had left the unit and the ward had been deep-cleaned. The researchers used rapid DNA sequencing to show that the new case of MRSA was related to the earlier outbreak, leading them to hypothesise that a member of staff in the hospital might be unwittingly carrying the MRSA strain identified months earlier, allowing the same strain to infect another patient months after the initial outbreak and infection control measures.

As a result of this, 154 health care workers were screened for MRSA, and one member of staff was found to be carrying the same strain of MRSA linked to the outbreaks. The worker was then treated to eradicate their MRSA carriage, and the outbreak was contained.

According to Professor Julian Parkhill, lead author from the Wellcome Trust Sanger Institute in Cambridge, UK, Routine use of DNA sequencing could have detected this MRSA outbreak 6 months earlier than standard techniques, and might well have prevented substantial illness and costs arising from MRSA transmission and subsequent infection. Whole-genome sequencing of MRSA could make an important contribution to infection-control investigation and practice, allowing quicker identification, tracking and isolation of outbreaks than is currently possible.*

This is the first study in which DNA sequencing has been used alongside conventional methods in real time, allowing scientists to directly compare the two and to understand how DNA sequencing might be effectively used alongside existing techniques in future.

Before this technology can be used in routine clinical practice, we will require automated tools that interpret sequence data and provide information to healthcare workers and people without specialist sequencing knowledge says Professor Sharon Peacock, lead author from the University of Cambridge, who adds that we are currently working on such a system.

Writing in a linked Comment, Dr Binh Diep, from the University of California, San Francisco, USA, states that, The advent of high-throughput whole-genome sequencing has the potential to revolutionise outbreak investigations by providing a substantial advance in our ability to discriminate between different strains, compared with traditional molecular methods.*


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

Online ACLS Certification

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)