RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT

Modern life may cause sun exposure, skin pigmentation mismatch


Feb 16, 2013 - 5:00:00 AM

 

UNIVERSITY PARK, Pa. -- As people move more often and become more urbanized, skin color -- an adaptation that took hundreds of thousands of years to develop in humans -- may lose some of its evolutionary advantage, according to a Penn State anthropologist.

About 2 million years ago, permanent dark skin color imparted by the pigment -- melanin -- began to evolve in humans to regulate the body's reaction to ultraviolet rays from the sun, said Nina Jablonski, Distinguished Professor of Anthropology.

Melanin helped humans maintain the delicate balance between too much sunlight and not enough sunlight. The pigment allowed enough ultraviolet radiation to produce vitamin D, a vitamin that helps the body absorb calcium, while protecting the skin from the intense ultraviolet radiation in the equator. Too much sunlight can cause the destruction of folate, which is also critical to cell division.

As some humans moved away from the equator to places where the sun's rays are not nearly as intense, they lost pigmentation, said Jablonski, who reports on her research today (Feb. 16) at the annual meeting of the American Association for the Advancement of Science in Boston.

Unlike their ancestors, modern humans are more mobile. A person with darker skin may move to regions with less intense sunlight, and those with less pigmentation may move to areas that are closer to the equator.

We move around a lot now, said Jablonski. People can move across 90 degrees of latitude in a single day whereas early humans generally only went a few kilometers in the same time.

In addition to moving regularly, most people now live in cities with limited exposure to the sun. Nearly 60 percent of the people in the world live in cities now, said Jablonski.

Most people who live in cities also work indoors, further reducing their ability to make enough vitamin D in their skin.

Think about a farmer who lived in northern England and worked outside, said Jablonski. In the past, that farmer had the right amount of light pigmentation to make it possible for him to produce enough vitamin D in his skin in the summer to satisfy most of his yearly needs.

However, Jablonski said a typical worker who lives in England today is rarely exposed to that amount of sun, Jablonski said.

Now, a person in England is not getting very much sun at all, except maybe when he travels to Spain on vacation for a few weeks, the researcher said.

Health problems are compounded when people do not receive enough sunlight, or when they have a mismatch between their skin pigmentation and ultraviolet radiation. This can lead to a vitamin D catastrophe for many people, Jablonski said.

Jablonski said that there are ways to increase vitamin D without increasing the risk of skin cancer through exposure to the sun. By far, the safest way and the cheapest way is to use vitamin D supplements, which are widely available in stores, said Jablonski.

In earlier studies, researchers found that early humans had pinkish skin that was covered with black fur, much like today's chimpanzees. The fur acted as a sunscreen. However, following the loss of body hair -- which helped the early humans stay active without overheating -- permanent dark pigmentation became a crucial evolutionary tool to manage exposure to ultraviolet rays, according to Jablonski.

By studying patterns of pigmentation and the amount of ultraviolet rays, Jablonski found that skin color was an example of natural selection at work to protect the skin from the sun.


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

Online ACLS Certification

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)