RxPG News Feed for RxPG News

Medical Research Health Special Topics World
 Asian Health
 Food & Nutrition
 Men's Health
 Mental Health
 Occupational Health
 Public Health
 Sleep Hygiene
 Women's Health
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 World Healthcare
 Latest Research
 Alternative Medicine
 Clinical Trials
 Infectious Diseases
 Sports Medicine
   Medical News
 Awards & Prizes
   Special Topics
 Odd Medical News

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT

NIH Common Fund announces awards for Single Cell Analysis Program

Oct 15, 2012 - 4:00:00 AM


The National Institutes of Health plans to invest more than $90 million over five years, contingent upon the availability of funds, to accelerate the development and application of single cell analysis across a variety of fields. The goal is to understand what makes individual cells unique and to pave the way for medical treatments that are based on disease mechanisms at the cellular level. Supported by the NIH Common Fund, NIH plans to support 26 awards as part of three initiatives of the Single Cell Analysis Program (SCAP).

Single cell analysis emerged as an important field of research after new technologies with improved sensitivity made it possible to measure cell-to-cell differences in living organisms and correlate the variation with changes in biological function and disease processes.

By profiling individual cells, researchers can identify rare cell types as well as alterations in the health or condition of specific cells that may relate to functional changes and to determine the influence of cellular organization and environment on such cells and states. The long-term goal of the SCAP is to accelerate the move towards personalizing health to the cellular level by understanding the link between cell variation, tissue and organ function, and emergence of disease.

The development of new technologies that can detect differences between individual cells within the same tissue is crucial to our understanding of a wide variety of diseases, said NIH Director Francis S. Collins, M.D., Ph.D. This Common Fund Program is an excellent example of how the NIH can accelerate the pace of biomedical discovery.

The Single Cell Analysis Program will support three research centers that will work together to identify patterns of gene expression in individual human cells within a variety of tissues including the brain, heart, placenta, and olfactory system. The goal is to reveal previously undetectable differences in the molecular composition of individual cells; this will offer a new way to categorize cells using a genetic signature.

The three groups have also proposed novel technical and computational approaches to identify relevant variations in gene expression among individual cells and to assess the functional consequences of these variations.

The funded groups will be managed as an integrated network to maximize collaboration. All data and protocols will be made available to the research community.

The program plans to support 15 high-risk/high-impact projects to generate new methods or significantly improve existing methods for single cell analysis. The projects propose the development of new tools to enhance measurement parameters such as sensitivity, selectivity, spatiotemporal resolution, scalability and/or non-destructive measures that preserve the integrity of the cell. The new tools will also improve capabilities for the simultaneous measurement of multiple molecular components (like genes or proteins) within a single cell.

Examples of the proposed technologies include:

Related Latest Research News

Subscribe to Latest Research Newsletter

Enter your email address:

For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

Contact us

RxPG Online


Online ACLS Certification


    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)