RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT

Notre Dame research could improve sustainability and cost effectiveness of wastewater treatment


Nov 16, 2012 - 5:00:00 AM

 

University of Notre Dame researcher Robert Nerenberg can tell you many things you might not know about wastewater treatment plants, including their significant carbon footprint, energy demands and chemical costs. His past research has addressed ways to drastically improve the energy efficiency of wastewater treatment. He now is telling the wastewater treatment industry about his promising new line of research that has the capability of significantly decreasing chemical costs and carbon footprint.

Nerenberg, an associate professor of civil and environmental engineering and earth sciences, points out that wastewater treatment plants are increasingly using a biologic nutrient removal (BNR) process to protect human health and the environment. This BNR process typically adds an external electron donor, or carbon source, such as methanol or ethanol. However, these chemicals are expensive, have toxicity and handling concerns, and can have a significant carbon footprint.

Nerenberg notes that gaseous electron donors have rarely been used in wastewater treatment because of their sparse solubility. However, a new biofilm reactor technology known as the membrane-biofilm reactor (MBfR) effectively delivers gaseous substances directly to the biofilm, bypassing the solubility problems. Hydrogen gas has been delivered to an MBfR to remove oxidized contaminants such as nitrate.

Nerenberg is studying the feasibility of using several inorganic or gaseous compounds, such as sulfur, sulfur dioxide, sulfite, hydrogen sulfite and methane, for delivery to MBfRs. Many of these compounds are waste products of other industries and can be much more cost effective and sustainable than the carbon compounds currently used in BNR processes. Elemental sulfur, for example, is a waste product from a number of industries, including oil refining and coal or gas-burning refining plants, and in many cases these industries would be happy to provide the sulfur for free to entities willing to remove it. The research thus also offers a means to transform a waste product into a valuable resource.

Nerenberg's research offers such promise that the Water Environment Research Foundation (WERF) Endowment for Innovation n Applied Water Quality Research awarded him its 2012 Paul L. Busch Award. The $100,000 award recognizes an outstanding individual whose ongoing efforts contribute significantly to water quality research and its practical application in the water environment.

The Busch Award Committee identified Nerenberg's work as feasible and able to demonstrate results and full-scale application quickly. Nerenberg will initially focus his research on sulfur and sulfur dioxide, which have the highest potential for immediate application. And he is already moving the research forward quickly with help from the Hampton Roads Sanitation District in Virginia, where preliminary denitrification tests have been conducted with sulfur and sulfur dioxide.

Nerenberg hopes the research will provide the basic information necessary to quickly develop treatment applications and help identify the most suitable reactor configurations, thereby dramatically decreasing operational costs and improving sustainability at wastewater treatment facilities.


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

Online ACLS Certification

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)