Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT

Rice University wins neuroengineering grant


Sep 5, 2013 - 4:00:00 AM

 

An effort by Rice University to train the neuroengineers of the future has drawn nearly $2.8 million in support from the National Science Foundation (NSF).

The highly competitive Integrative Graduate Education and Research Traineeship (IGERT) grant for the program led by bioengineer Robert Raphael with colleagues at Rice and Baylor College of Medicine will spur innovative training that spans neuroscience, electrical engineering, mechanical engineering and bioengineering.

The money will primarily support graduate students learning about new technologies to study the brain, Raphael said. He expects the program will begin accepting applications next spring.

The students will participate in an innovative curriculum focused on problem-based learning and the development of online educational resources. They will be exposed to global, ethical and policy aspects of neuroengineering and will be able to apply for an internal competitive incentive fund to explore new research ideas and technologies.

We want engineering students at Rice to learn from neuroscientists at Baylor and neuroscience students at Baylor to learn from engineering at Rice, Raphael said. By doing so, we will enhance the education of these students beyond what's possible at one institution or the other.

Raphael, an associate professor of bioengineering, is based at Rice's BioScience Research Collaborative. Joining him on the project as co-investigators are Rice colleagues Behnaam Aazhang, the J.S. Abercrombie Professor of Electrical and Computer Engineering (ECE) and chair of the ECE Department; Marcia O'Malley, an associate professor of mechanical engineering and materials science and computer science; and Caleb Kemere, an assistant professor of electrical and computer engineering. Dora Angelaki, the Wilhelmina Robertson Professor and chair of the Department of Neuroscience at Baylor College of Medicine, also is a co-investigator.

Advances in electrical and optical methods to interact with the brain will help train students in three areas: cellular systems neuroengineering, which involves the study of molecular and cellular signaling; the engineering of multineuron circuits to induce specific responses in the brain; and translational neuroengineering to develop clinical devices like prosthetics and deep-brain stimulators.

Neuroengineering, as an emerging discipline, is very interdisciplinary, Aazhang said. Students need to learn about the physiology of the brain, the human nervous system, computational, theoretical and experimental neuroscience, and engineering tools to be able to get started in doing research in this arena.

As a graduate student, you need to become expert very quickly in several different areas that, a few years ago, were far removed from each other, he said.

Many Rice labs are working on these very technologies, including Raphael's studies of biological membranes and hearing loss, Aazhang's work on real-time brain stimulation, O'Malley's work on robotic exoskeletons that respond to wireless commands from the brain and Kemere's investigation of interfaces with memory and other cognitive processes.

Raphael cited several Rice faculty who are not co-investigators but made pivotal contributions to the NSF bid, including bioengineer Amina Qutub, who takes a systems biology approach to cellular signaling in the neurovasculature, and electrical and computer engineer Jacob Robinson, who develops methods for recording from neurons using nanoscale technology.

We have this nice convergence, Raphael said. I've been arguing since 2003 for a strategic plan to build neuroengineering at Rice. A few years ago, ECE made a decision to move forward in this area. Bioengineering has been building strength in systems biology and the new chair of neuroscience at Baylor (Angelaki) was trained as a biomedical engineer. All these things created the fertile environment that is now coming together.

The NSF's IGERT program was established in 1997 and has funded more than 125 sites to meet the challenges of educating U.S. scientists, engineers and educators. The new grant is the third IGERT Rice has received. Earlier grants were for nanophotonics research and a program in cellular engineering.


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

Online ACLS Certification

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)