RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Solar winds triggered by magnetic fields

Nov 2, 2009 - 5:00:00 AM
Images taken in February 2007 from the EIS instrument showed that hot plasma outflows are due to a process called slipping reconnection. At the edges of active regions where this process can occur, a slow, continuous restructuring of the magnetic field leads to the release of energy and acceleration of particles in the Sun's hot outer atmosphere, known as the corona. Slipping reconnection is the first theory to explain how observed outflows from the Sun can be located over areas of a single magnetic sign, something previously considered improbable.

 
[RxPG] Solar wind generated by the sun is probably driven by a process involving powerful magnetic fields, according to a new study led by UCL (University College London) researchers based on the latest observations from the Hinode satellite.

Scientists have long speculated on the source of solar winds. The Extreme Ultraviolet Imaging Spectrometer (EIS), on board the Japanese-UK-US Hinode satellite, is now generating unprecedented observations enabling scientists to provide a new perspective on the 50-year old question of how solar wind is driven. The collaborative study, published in this month's issue of Astrophysical Journal, suggests that a process called slipping reconnection may drive these winds.

Deb Baker, lead author from UCL Mullard Space Science Laboratory, says: Solar wind is an outflow of million-degree gas and magnetic field that engulfs the Earth and other planets. It fills the entire solar system and links with the magnetic fields of the Earth and other planets. Changes in the Sun's million-mile-per-hour wind can induce disturbances within near-Earth space and our upper atmosphere and yet we still don't know what drives these outflows.

However, our latest study suggests that it is the release of energy stored in solar magnetic fields which provides the additional driver for the solar wind. This magnetic energy release is most efficient in the brightest regions of activity on the Sun's surface, called active regions or sunspot groups, which are strong concentrations of magnetic field. We believe that this fundamental process happens everywhere on the Sun on virtually all scales.

Images taken in February 2007 from the EIS instrument showed that hot plasma outflows are due to a process called slipping reconnection. At the edges of active regions where this process can occur, a slow, continuous restructuring of the magnetic field leads to the release of energy and acceleration of particles in the Sun's hot outer atmosphere, known as the corona. Slipping reconnection is the first theory to explain how observed outflows from the Sun can be located over areas of a single magnetic sign, something previously considered improbable.

Computer models of the Sun's magnetic field were used to identify regions where slipping reconnection could occur. The locations proposed by the computer model were compared with measurements of the speed of the gas coming from the solar corona. The comparison showed the gas was moving outward at up to 100,000 mph, 1,000 times the wind speed in a hurricane, over the possible slipping reconnection regions.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)