RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT

Supercharged


Nov 15, 2012 - 5:00:00 AM

 

MANHATTAN, Kan. -- Supercharging is a technique no longer confined to automotive enthusiasts.

Artem Rudenko, a new assistant professor of physics at Kansas State University and member of the James R. Macdonald Laboratory, was one of the principal investigators in an international physics collaboration that used the world's most powerful X-ray laser to supercharge an atom. By stripping a record 36 electrons from a xenon atom, researchers were able to bring the atom to a high positively charged state thought to unachievable with X-ray energy.

The findings will help scientists create and study extreme new states of matter, such as highly charged plasma, by fine-tuning the laser's X-ray radiation wavelengths in resonance with atomic levels -- resulting in ultra-efficient electron removal.

Conversely, researchers can use the findings to tune the laser wavelength to avoid enhanced electron stripping. This will reduce damage caused by X-rays and help produce better quality images of nano-world objects.

Taking single-shot, real-time images of viruses, proteins or even smaller objects is a long-standing dream that came close to reality with the advent of powerful X-ray laser like the Linac Coherent Light Source, Rudenko said. The main problem, however, is that such a laser also inevitably destroys the sample in the process of acquiring an image, and reducing this destruction by any means is critical for producing high-quality images.

The study on supercharging was performed through a large international collaboration led by Daniel Rolles from Max Planck Advanced Study Group, or ASG, in Hamburg, Germany, along with Rudenko and Joachim Ullrich, now a president of the PTB, the German national metrology institute.

We brought 11 tons of equipment funded by the German Max-Planck Society to LCLS, which is a unique 1.5 km-long X-ray laser operated by Stanford University for the U.S. Department of Energy, and involved scientists from 19 research centers all over the world, Rudenko said. We also needed to come back one year after our first experiment and repeat the measurements to understand the results. From all that we knew about this process we expected to strip at most 26 electrons, and it immediately became clear that the existing theoretical approaches have to be modified.

For the second leg of experiments physicists chose even higher X-ray energy -- and, surprisingly, saw fewer electrons kicked out of the atom. The key was that even though the energy was higher, it was not in resonance.

While it is known that resonances in atoms affect their charged states, it was unclear what a dramatic effect this could have in heavy atoms like xenon under ultra-intense X-rays, Rudenko said. Besides ejecting dozens of electrons, this more than doubled the energy absorbed per atom compared to all expectations.

Follow-up experiments led by Rudenko discovered similar effects in krypton atoms and several molecules.

The results were analyzed by Benedict Rudek from ASG Hamburg and reported in


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

Online ACLS Certification

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)