XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
  Parkinson's
  Dementia
   Alzheimer's
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Alzheimer's Channel
subscribe to Alzheimer's newsletter

Latest Research : Aging : Dementia : Alzheimer's

   DISCUSS   |   EMAIL   |   PRINT
Alternative approach opens up new prospects for developing a treatment
Jul 28, 2005, 22:49, Reviewed by: Dr.

Scientists from the Flanders Interuniversity Institute for Biotechnology (VIB) associated with the University of Antwerp have achieved a new breakthrough in their research on the origins of Alzheimer's disease.

 
Scientists from the Flanders Interuniversity Institute for Biotechnology (VIB) associated with the University of Antwerp have achieved a new breakthrough in their research on the origins of Alzheimer's disease. Their alternative approach opens up new prospects for developing a treatment which can slow the disease's progress. The researchers have shown that 'the plaques' which form in the brain of patients are linked to damage to nearby blood vessels. Leakage appears to occur between the blood vessels and the brain, as a result of which the plaques develop and the disease manifests itself.

Alzheimer's disease

Alzheimer's disease, a degenerative disease that gradually and progressively destroys brain cells, affects between 50% and 70% of all dementia patients and is therefore the major form of dementia. About 100,000 people suffer from this disease in Belgium. The damage caused to memory and mental functioning makes it one of today's most frightening syndromes. In particular, the first realization of the loss of any sense of reality is extremely difficult to accept. So, science continues to search feverishly for ways to treat the disease.

The formation of plaques plays a key role

Alzheimer's disease is characterized by an increasing deposit of the amyloid-β protein in the brain. The accumulation of this protein results in 'plaques'; deposits which settle in the brain cells responsible for memory and observation. How the plaques develop is the key in the search for a treatment. Samir Kumar-Singh and his colleagues on a team headed by Christine Van Broeckhoven have unraveled how certain plaques are formed. In various mouse models, they demonstrate that the plaques attach primarily onto the blood vessels. The vessels show clear structural damage, so that the strictly-controlled separation between blood vessels and brain is compromised and leakage occurs.

A new model as a first step towards a treatment?

Under normal circumstances, the blood vessels transport the excess amyloid-β protein away from the brain. However, the protein has a harmful effect on blood vessel walls. This effect is perhaps strengthened as a result of ageing, which causes the protein to be removed less efficiently. The blood vessel loses strength and in its immediate vicinity the accumulation of the amyloid-β protein increases and plaques develop. Finally, the damage to the blood vessel is so great that it is no longer functional and other blood vessels take over its tasks.

The results of the research of Samir Kumar-Singh opens up alternatives for developing new treatments. For example, a treatment which promotes the removal of the amyloid-β protein from the brain can significantly impede the onset of Alzheimer's disease. A new approach which might have far-reaching consequences. Additional research should make it possible to verify this in greater detail.

 

- This research is published today in the 'American Journal of Pathology'.
 

http://www.vib.be/

 
Subscribe to Alzheimer's Newsletter
E-mail Address:

 



Related Alzheimer's News

Hope remains for Alzheimer's sufferers
CATIE Study: Antipsychotics in Alzheimer's No Better Than Placebo
Mediterranean diet associated with a lower risk for Alzheimer�s disease
Omega-3 fatty acid supplements may slow cognitive decline
Microscopic brain damage detected in early Alzheimer's disease
Novel technique can identify early cellular damage in Alzheimer's disease
Cathepsin B - Part of protective mechanism against Alzheimer's
Boosting ubiquitin C-terminal hydrolase L1 (Uch-L1) restores lost memory
New research points toward mechanism of age-onset toxicity of Alzheimer's protein
Structure of calbindin-D28K Protein Involved in Preventing Alzheimer�s, Huntington�s Diseases Characterised


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us