XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
  Parkinson's
  Dementia
   Alzheimer's
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Alzheimer's Channel
subscribe to Alzheimer's newsletter

Latest Research : Aging : Dementia : Alzheimer's

   DISCUSS   |   EMAIL   |   PRINT
Research sheds light on creatine's presence in brain
Dec 22, 2005, 05:15, Reviewed by: Dr. Priya Saxena

"It seems that there is an overlooked aspect of energy disturbance in Alzheimer's disease, and maybe in other diseases. But as to the detailed explanation of why (the disturbance) is there - the jury is still out."

 
Alzheimer's disease is one of the most hauntingly destructive maladies to wreak havoc on humans. It robs children of parents and spouses of each other-with lifetimes of memories lost forever behind blank stares.

But researchers are working toward answers to the many questions that have made Alzheimer's a complex and unsolved degenerative disease and, in some cases, a death sentence.

In an article in the November Journal of Biological Chemistry, a team of Canadian and American scientists reports the first-ever finding of elevated levels of creatine-the newly discovered agent of Alzheimer's-in brain tissue. The article is available pre-press at the Journal of Biological Chemistry's Web site.

"It is the first time anyone has succeeded in detecting creatine directly in situ, in any tissue. The usual methods are to grind up a large amount of tissue and extract it in bulk," explains one of the paper's authors, Kathleen Gough, professor of chemistry at the University of Manitoba.

Gough and her colleagues, along with many others in the field, are searching tenaciously for the molecular answers that might someday lead to the end of Alzheimer's disease. Of particular note regarding the current study was the use of infrared spectroscopy as another tool that has contributed to the body of knowledge regarding Alzheimer's.

"It's the first time that we've discovered creatine in Alzheimer's disease samples that didn't appear in control samples. Nobody has ever seen this before," explains Robert Julian, an expert in infrared spectroscopy at the University of Wisconsin-Madison Synchrotron Radiation Center (SRC), the light source utilized for this project.

The key to using infrared, the researchers explain, is that it is relatively unobtrusive as compared to normal laboratory protocols used to study brain tissues, thus keeping the samples closer to being "pristine."

"Due to its small size and great solubility, creatine dissolves and would be washed away under normal tissue preparation protocols for staining. Step one in any staining process is to soak a tissue sample in an aqueous solution of formaldehyde, called formalin. This 'fixes' the proteins in place, but also washes out the small, soluble metabolites like creatine," explains Gough. "What we do is prepare the tissue without any treatment, and we look at unfixed, flash frozen tissue-nothing added or removed, except water."

Thus while the use of synchrotron radiation, a traditionally physics-focused tool for discovery, to study Alzheimer's has surprised some, it may be this application that could one day turn the tide on Alzheimer's Disease. "That's where all of this is going ultimately-is to try and find a cure," explains Julian.

Yet researchers stress that while this information sheds more light on a troubling disease and might possibly lead to improved treatment, the term "cure" simply cannot be used yet.

"It could be really important," concludes Gough. "It seems that there is an overlooked aspect of energy disturbance in Alzheimer's disease, and maybe in other diseases. But as to the detailed explanation of why (the disturbance) is there - the jury is still out."
 

- November Journal of Biological Chemistry
 

www.wisc.edu

 
Subscribe to Alzheimer's Newsletter
E-mail Address:

 



Related Alzheimer's News

Hope remains for Alzheimer's sufferers
CATIE Study: Antipsychotics in Alzheimer's No Better Than Placebo
Mediterranean diet associated with a lower risk for Alzheimer�s disease
Omega-3 fatty acid supplements may slow cognitive decline
Microscopic brain damage detected in early Alzheimer's disease
Novel technique can identify early cellular damage in Alzheimer's disease
Cathepsin B - Part of protective mechanism against Alzheimer's
Boosting ubiquitin C-terminal hydrolase L1 (Uch-L1) restores lost memory
New research points toward mechanism of age-onset toxicity of Alzheimer's protein
Structure of calbindin-D28K Protein Involved in Preventing Alzheimer�s, Huntington�s Diseases Characterised


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us