XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
  Drug Delivery
  Nanotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Biotechnology Channel
subscribe to Biotechnology newsletter

Latest Research : Biotechnology

   DISCUSS   |   EMAIL   |   PRINT
Simple Peptides Stabilize Mighty Membrane Proteins
Jun 22, 2005, 13:05, Reviewed by: Dr.

To date, though, relatively few complex membrane proteins have been successfully purified with available detergents. In this issue, Shuguang Zhang and colleagues show that a simple amino acid�based detergent can successfully stabilize the dauntingly large protein complex photosystem I (PS-I), an integral part of the photosynthetic machinery.

 
Cell membranes are largely made of proteins, and membrane proteins account for about a third of all genes. Despite their importance, they are devilishly hard to isolate and stabilize, and therefore are hard to study. The problem lies in their structure: membrane proteins have at least one hydrophobic domain, composed of a stretch of water-repelling amino acids, which holds the protein snugly in the lipid membrane. Purifying such a protein in an aqueous medium makes the hydrophobic parts aggregate, destroying the protein�s delicate three-dimensional structure and often disrupting its function. The alternative is to extract the protein with a detergent, a two-headed �Janus� molecule with both hydrophobic and hydrophilic ends. The protein remains surrounded by the hydrophobic ends, while water clusters at the hydrophilic ends, easing the protein out of the membrane and into solution, where it can be studied.

To date, though, relatively few complex membrane proteins have been successfully purified with available detergents. In this issue, Shuguang Zhang and colleagues show that a simple amino acid�based detergent can successfully stabilize the dauntingly large protein complex photosystem I (PS-I), an integral part of the photosynthetic machinery.

The molecule they made, abbreviated A6K, links six units of the hydrophobic amino acid alanine to one of the hydrophilic amino acid lysine. The authors used it to stabilize PS-I and then attached the detergent�protein complex to a glass slide, allowed it to dry, and examined the stability of PS-I by testing its fluorescence. Intact PS-I emits red light with a characteristic peak wavelength; as it degrades, this peak subsides and is replaced by another, bluer peak. Even the two best standard detergents did poorly at maintaining the red peak. In contrast, the spectrum after A6K extraction was almost a perfect match for the normal one, indicating the complex was largely intact after drying. Furthermore, the complex appeared to remain stable for up to three weeks on the glass slide.

The potential applications of this work are severalfold. PS-I itself remains to be fully characterized, and this stabilization technique offers new means to explore its properties. In addition, an isolated and stabilized form of PS-I may hold some promise as an alternative energy source, since it generates an electric current in sunlight. Perhaps most importantly, the full potential of such simple amino acid�based detergents has only begun to be explored. It is likely that either this one, or others like it, can be used to isolate and stabilize hundreds of other membrane proteins, allowing them to be studied in detail for the first time.
 

- (2005) Simple Peptides Stabilize Mighty Membrane Proteins for Study. PLoS Biol 3(7): e259
 

Print full text journal article PDF

 
Subscribe to Biotechnology Newsletter
E-mail Address:

 

DOI: 10.1371/journal.pbio.0030259

Published: June 21, 2005

� 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License


Related Biotechnology News

Gold Nanoparticle Molecular Ruler to Measure Smallest of Life�s Phenomena
Tiny inhaled particles take easy route from nose to brain
DNA Amplification and Detection Made Simple
Solitons Could Power Artificial Muscles
Nanoparticles could deliver multi-drug therapy to tumors
Nanotechnology can identify disease at early cellular level
Light-sensitive particles change chemistry at the flick of a switch
DNA Fragments for Making Tomatoes Taste Better Identified
'Custom' nanoparticles could improve cancer diagnosis and treatment
Human albumin from tobacco plants


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us