XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
  Drug Delivery
  Nanotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Biotechnology Channel
subscribe to Biotechnology newsletter

Latest Research : Biotechnology

   DISCUSS   |   EMAIL   |   PRINT
New protein tagging and detection system based on a process for "splitting" a green fluorescent protein
Jan 4, 2005, 15:09, Reviewed by: Dr.



 
University of California scientists working at Los Alamos National Laboratory have developed a new protein tagging and detection system based on a process for "splitting" a green fluorescent protein. Unlike current protein detection methods, the method works both in living cells and in the test tube and can be used to quantify proteins down to 0.1 picomole, or one billionth of a gram of a typical protein molecule. Because the method can be used to detect protein aggregation within the living organisms, it will be useful for high-throughput studies of protein structure and protein production and for studying diseases, like Alzheimer's, that are associated with protein misfolding and aggregation.

In research published recently in the online version of the scientific journal Nature Biotechnology, Los Alamos scientists St�phanie Cabantous, Tom Terwilliger and Geoff Waldo describe a method for engineering soluble, self-associating fragments of green fluorescent proteins that can be used to tag or detect soluble and insoluble proteins in living cells or cell lysates without changing protein solubility.

According to team member Geoff Waldo, "we think this discovery will have a major impact in the field of protein biotechnology and work related to deciphering the structure and function of proteins. I like to think of it as an enabling technology, a toolbox, if you will, for protein researchers, that could help them close the gap between sequencing the DNA of the human genome and determining the structures and functions of the encoded proteins."

The new system is based on the Rapid Protein Folding Assay (RPFA) method developed several years ago by Waldo, which used green fluorescence to signal protein folding. That method worked by fusing a protein's DNA to the DNA for green fluorescent proteins (GFP). The hybrid protein created by this linking then had the characteristics of both the GFP and the protein being assayed. If the protein being produced, or expressed, folds correctly, then the attached GFP also will fold correctly as it too is expressed. If the protein being expressed does not fold correctly, then the GFP also will not fold correctly and not fluoresce green. After scientists discovered that the GFP had some drawbacks, they developed the new system, which uses GFP fragments instead.

The split green fluorescent protein research resulted from Laboratory scientists efforts to develop a practical method for engineering protein folding and solubility as part of the National Institutes of Health (NIH) Protein Structure Initiative, a large-scale effort to determine the structures of thousands of protein molecules. These protein structures can be used in the design of new therapeutics and to deepen our understanding of how cells work.

 

- published recently in the online version of the scientific journal Nature Biotechnology
 

DOE/Los Alamos National Laboratory

 
Subscribe to Biotechnology Newsletter
E-mail Address:

 

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA's Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.

Los Alamos is the lead institution in one of nine NIH-funded Protein Structure Initiative Centers. The Los Alamos center seeks to eradicate tuberculosis by solving questions regarding the structure of key proteins from Mycobacterium tuberculosis, which can then be targeted for drug-design efforts.


Related Biotechnology News

Gold Nanoparticle Molecular Ruler to Measure Smallest of Life�s Phenomena
Tiny inhaled particles take easy route from nose to brain
DNA Amplification and Detection Made Simple
Solitons Could Power Artificial Muscles
Nanoparticles could deliver multi-drug therapy to tumors
Nanotechnology can identify disease at early cellular level
Light-sensitive particles change chemistry at the flick of a switch
DNA Fragments for Making Tomatoes Taste Better Identified
'Custom' nanoparticles could improve cancer diagnosis and treatment
Human albumin from tobacco plants


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us