XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
  Hypertension
  CAD
  Myocardial Infarction
  CHF
  Clinical Trials
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Cardiology Channel
subscribe to Cardiology newsletter

Latest Research : Cardiology

   DISCUSS   |   EMAIL   |   PRINT
Variations in transforming growth factor beta receptor Type II can damage main artery
Jul 23, 2005, 01:23, Reviewed by: Dr.

Co-authors on the Circulation paper are first author, Hariyadarshi Pannu, Ph.D., Van Tran Fadulu, Jessica Chang, Andrea Lafont and Sumera N. Hasham, Ph.D., all of the UT Medical School Department of Internal Medicine and the IMM; Anthony Estrera, M.D., assistant professor, and Hazim Safi, M.D., professor and division chair of the UT Medical School at Houston Department of Cardiothoracic and Vascular Surgery; Elizabeth Sparks, Department of Internal Medicine, Ohio State University; and Philip F. Giampietro, M.D., Ph.D., and Christina Zaleski, Department of Medical Genetic Services, Marshfield Clinic; Sanjay Shete, Ph.D., University of Texas M. D. Anderson Cancer Center Department of Epidemiology; and Marcia C. Willing, M.D., Ph.D., University of Iowa Department of Pediatrics.

 
Scientists have identified the first genetic mutations that cause the aorta � the body's main artery � to widen, tear and rupture.

Published online by Circulation: Journal of the American Heart Association, the findings of a team led by University of Texas Medical School at Houston researchers shed new light on the molecular causes of thoracic aortic aneurysms and dissections. They also provide a new route for early warning of the condition, which builds slowly, usually with no symptoms, then often kills swiftly.

"We found that mutations in the Transforming Growth Factor Beta Receptor Type II (TGFBR2) caused aortic aneurysms and dissections in four families. This gives us a molecular pathway to study for development of therapies and for biological markers of the disease," said Dianna Milewicz, M.D., Ph.D., director of the UT Medical School Division of Medical Genetics and senior author of the paper.

Finding biological markers that flag aneurysm, a bulging of the aorta that leads to dissection, a lengthwise separation of tissues in the artery wall, is critically important for early diagnosis.

Aneurysms can be managed initially with medication and then successfully repaired to prevent catastrophic dissection and rupture, Milewicz said. Many patients never have a chance at treatment because they go undiagnosed, even when they go to emergency rooms with severe chest pain because diagnostic tests for heart attack do not uncover aortic defects. Actor John Ritter, for example, died in September 2003 from an undiagnosed dissection that ruptured.

Aortic aneurysms and dissections kill some 18,000 Americans every year. Research shows that 20 percent of those victims have close relatives who've had the disease.

Inherited aortic disease takes an unpredictable path, with some family members dying of a dissection in their 20s, others in their 70s. Study authors recommend that family members at risk of inheriting the defective gene undergo lifelong routine imaging of their aortas.

"Families with multiple members who have had thoracic aortic aneurysms and dissections should consider undergoing evaluation for these mutations," Milewicz said.

People carrying the TGFBR2 mutations should be advised to have their aorta routinely checked with advanced imaging techniques such as magnetic resonance or echocardiography. Preventive surgical repair should be undertaken when the ascending aorta's diameter approaches 5 centimeters, the study recommends.

Milewicz had earlier mapped this genetic variation to a portion of chromosome 3. In the present paper, researchers pinpointed the culprit gene as TGFBR2 by analyzing 80 families with a history of aneurysm and dissection. Four unrelated families had variations in the TGFBR2 gene that altered the structure of the protein and were connected to aneurysms, dissections and fatalities.

Structural analysis of the mutant TGFBR2 protein showed changes in a portion of the protein that hinder its ability to send and receive signals in its molecular pathway, said co-author C. S. Raman, Ph.D., assistant professor of biochemistry and director of the Medical School's Structural Biology Research Center.

"There are many proteins that turn this pathway off and regulate it," Milewicz said. "We are studying how the mutation changes the cell biology of the cells in the aorta."

The TGFBR2 pathway has long been studied in relation to cancer. Inactivation of the pathway has been shown to contribute to tumor formation and growth. Milewicz said the mutations connected to aortic aneurysm were not associated with cancer in the families studied. None of the families had symptoms of Marfan syndrome, a connective tissue disease that leaves its victims susceptible to aortic aneurysm and dissection.

"We know there are more genes involved in inheritance of aortic disease," Milewicz said. Milewicz's team continues to scrutinize a stretch of chromosome 5 to pinpoint another genetic variation that they earlier mapped to that area of the genome. Researchers elsewhere have mapped two other genetic variations affecting single families to chromosomes 11 and 16.
 

- Circulation: Journal of the American Heart Association
 

http://www.uthouston.edu/

 
Subscribe to Cardiology Newsletter
E-mail Address:

 

Milewicz also is on the faculty of the UT Graduate School of Biomedical Sciences at Houston and is appointed to the faculty of the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM).

Related Cardiology News

Seven-point system gauges seriousness of heart failure in elderly
Uric acid levels closely related to hypertension in Blacks
American College of Cardiology announces new initiative to improve safety for patients with Acute Coronary Syndromes
Is TROPHY misleading?
Fortified orange juice decreases not only cholesterol but also CRP
Heart Disease: Blame it on genes!
Famotidine may help to slow progression of chronic heart failure
Atherothrombotic disease is not just a 'western' problem
Changing normal heart cells into pacemakers
Ilk gene underlies heart failure


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us