XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
  Stem Cell Research
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Embryology Channel
subscribe to Embryology newsletter

Latest Research : Embryology

   DISCUSS   |   EMAIL   |   PRINT
Similar effects of osmolarity, glucose, and phosphate on cleavage past the 2-Cell stage in mouse embryos from outbred and F1 hybrid females
Jan 4, 2005, 18:58, Reviewed by: Dr.



 
For many years it has been a puzzle why embryos from most random-bred and inbred female mice exhibit a block at the 2-cell stage in classical embryo culture media. Because embryos of many F1 hybrids develop beyond this stage, it has been thought that the phenotype is dependent on the genotype of the female giving rise to the egg - there are "blocking" and "non-blocking" types of females.

In the January 2005 issue of Biology of Reproduction, Hadi, Hammer, Algire, Richards, and Baltz revisit this issue. The recent development of media in which even blocking embryos develop to the blastocyst stage allowed them to address specific properties implicated in the 2-cell block and to test the hypothesis that the 2-cell block is not restricted to particular genotypes, but that instead there is varying susceptibility. They show that both blocked and non-blocked embryos are indeed susceptible to culture effects, with differences in the threshold of susceptibility. Increase in osmolarity or glucose/phosphate levels can cause 2-cell arrest of both blocking and non-blocking embryos, and the blocking effect of osmolarity is rescued by glycine. These results not only clear up long-standing confusion about the etiology of the 2-cell block but also highlight the important effects of culture conditions on experimental design.
 

- The January 2005 issue of Biology of Reproduction
 

The full text of this paper is available from Biology of Reproduction--Papers in Press at www.biolreprod.org/cgi/rapidpdf/biolreprod.104.033324v1.pdf

 
Subscribe to Embryology Newsletter
E-mail Address:

 

Biology of Reproduction, published by the Society for the Study of Reproduction, is the top-rated peer-reviewed journal in the field of reproductive biology.

The January 2005 issue of Biology of Reproduction marks the start of the co-editorship of Drs. John Eppig and Mary Ann Handel. The new editors-in-chief, along with members of their board of associate editors, will provide highlights of some of the prominent papers in each issue of the journal. Following are the January highlights of groundbreaking papers dealing with genetic modification of germline stem cells and offering new insights into the "2-cell block" of embryo development in vitro.


Related Embryology News

Faults in housekeeping genes regulating protein trafficking results in skeletal deformities
Neural stem cells derived from human embryonic stem cells carry abnormal gene expression
Neurons grown from embryonic stem cells restore function in paralyzed rats
New stem-cell findings can help the body to cure itself
Putting avian transgenics on a par with transgenic mice
Harvard to Create Human Embryonic Stem Cell Lines
Stem Cell Study for Patients with Heart Attack Damage Seeks to Regenerate Heart Muscle
Stem cells - An alternative to skin grafting?
Bone morphogenetic protein 6 (BMP-6) factor stimulates cartilage growth from stem cells
Doctors grow organ from patients' own cells


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us