XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
  Diabetes
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Endocrinology Channel
subscribe to Endocrinology newsletter

Latest Research : Endocrinology

   DISCUSS   |   EMAIL   |   PRINT
Identification of Tomosyn as an Inhibitor of Neurosecretion
Jul 25, 2005, 17:13, Reviewed by: Dr.

The authors apply this strategy retrospectively to known mutants in Caenorhabditis elegans, Arabidopsis, and mouse. They identify two uncharacterized mutations in C. elegans, including one, tom-1, found in a forward genetic screen for enhancers of neurotransmission.

 
Genetic screens are commonly used to figure out which genes are involved in a biological process. The first step in a genetic screen is to isolate mutant animals that are defective in the process being studied. The next step is to find which of the thousands of genes has the mutation that causes the observed defect.

Positional cloning, the tried-and-true method for locating mutations, is slow and expensive. The authors propose using microarray hybridizations to speed the process. Their approach relies on the fact that a large fraction of the mutations found in screens are the results of premature stop codons, a particularly severe type of mutation. In cells, messages containing premature stop codons are rapidly destroyed by a protective pathway, called nonsense-mediated decay, thus making them directly detectable by microarray hybridization.

The authors apply this strategy retrospectively to known mutants in Caenorhabditis elegans, Arabidopsis, and mouse. They identify two uncharacterized mutations in C. elegans, including one, tom-1, found in a forward genetic screen for enhancers of neurotransmission.

Interestingly, their characterization of tom-1 mutants suggests that the highly conserved protein tomosyn inhibits neurotransmission in neurons. This study shows that microarray hybridizations will help reduce the time and effort required for positional cloning.
 

- Dybbs M, Ngai J, Kaplan JM (2005) Using Microarrays to Facilitate Positional Cloning: Identification of Tomosyn as an Inhibitor of Neurosecretion. PLoS Genet 1(1): e2
 

PDF of Article

 
Subscribe to Endocrinology Newsletter
E-mail Address:

 

DOI: 10.1371/journal.pgen.0010002

Copyright: � 2005 Dybbs et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License


Related Endocrinology News

Diabetes is an independent predictor of acute organ failure and subsequent death
Better mothering skills and less stress
Statins also reduce complications associated with metabolic syndrome
Insulin resistance in early teens may predict diabetes
Low testosterone levels associated with increased risk of death in men
Low-fat vegan diet rivals oral diabetes medications
Conjugated linoleic acids in dairy products targets diabetes
Obesity, Diabetes and Infertility: Leptin answers all!
TrialNet - Can Type 1 diabetes be prevented?
Infections Link With diabetes


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us