XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
  Diabetes
   NIDDM
   Insulin Resistance
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Diabetes Channel
subscribe to Diabetes newsletter

Latest Research : Endocrinology : Diabetes

   DISCUSS   |   EMAIL   |   PRINT
Findings may provide new target for treating Type 2 Diabetes
Aug 12, 2005, 20:59, Reviewed by: Dr.

"This study represents the first use of DNA chips to study islets of diabetic patients and the first demonstration of an important role for ARNT and altered gene expression in impaired beta-cell function in the pathogenesis of human type 2 diabetes," Dr. Kahn said.

 
Using the newest DNA chip technology, scientists at Joslin Diabetes Center have discovered a new gene implicated in the cause of type 2 diabetes. In a new study appearing in the August 12 issue of the journal Cell, the investigators first identified genes that were altered in their level of expression in islets isolated from people with type 2 diabetes. The researchers then went on to show that when they created a defect in one of these genes called ARNT in mice, the mice developed alterations in insulin secretion that were like those in humans with type 2 diabetes.

The ARNT (aryl hydrocarbon receptor nuclear translocator) gene is a member of a family of transcription factors essential for normal embryonic development and also is involved in response to conditions of hypoxia and certain environmental toxins, such as dioxin. Transcription factors like ARNT control the expression and activity of many other genes in the cell and thus serve as master regulators of cell function. As a component of the response to toxins and hypoxic stress, ARNT is also at a potential site to integrate genetic and environmental insults.

"While previous work suggested defects in other pathways in a small percentage of people with type 2 diabetes, what was unexpected was that the islets (beta cells) from all of the people with type 2 diabetes studied demonstrated a marked down-regulation of the nuclear transcription factor ARNT," said C. Ronald Kahn, M.D., President and Director of Joslin Diabetes Center and the Mary K. Iacocca Professor of Medicine at Harvard Medical School, who led the research team. "These findings provide new insights into the pathogenesis of the most common forms of type 2 diabetes and a possible new target for treatment of this disease," he said.

The investigators, including lead author Jenny Elizabeth Gunton, M.B.B.S., F.R.A.C.P., Ph.D., a C.J. Martin Fellowship recipient from Australia, then went on to demonstrate that reducing the level of the ARNT gene in beta cells in culture also produced defects in glucose-stimulated insulin release and alterations in islet gene expression that mimic those in humans with type 2 diabetes.

"This study represents the first use of DNA chips to study islets of diabetic patients and the first demonstration of an important role for ARNT and altered gene expression in impaired beta-cell function in the pathogenesis of human type 2 diabetes," Dr. Kahn said.

Type 2 diabetes is the most common human metabolic disease, affecting almost 200 million people worldwide, and is increasing at epidemic rates in the U.S. and worldwide. The pathogenesis of type 2 diabetes involves two defects: insulin resistance and impaired functioning of the insulin-producing beta cells in the pancreas. Both of these have some element of genetic programming. In 2 to 5 percent of patients with a form of type 2 diabetes known as maturity onset diabetes of the young (MODY), defects involving genes essential for beta-cell function have been found. However, in the majority of patients with the common variety of type 2 diabetes, the genetic defects of this beta-cell defect remain unknown.
 

- August 12 issue of the journal Cell
 

Joslin Diabetes Center

 
Subscribe to Diabetes Newsletter
E-mail Address:

 

The research was supported by funding from the Mary K. Iacocca Professorship and the Diabetes Genome Anatomy Project (DGAP) of the National Institute of Health's National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). It represents the unique synergy of a jointly funded public program, DGAP, and private support for diabetes research from the Iacocca Foundation.

Other researchers who participated in the study included Rohit N. Kulkarni, M.D., Ph.D., Yu-Hua Tseng, Ph.D., Terumasa Okada, Ph.D., all from Joslin; Russell S. Roberson, Ph.D., formerly of Joslin; Frank J. Gonzalez, M.D., and SunHee Yim, Ph.D., of the National Institutes of Health's National Cancer Institute; Camillo Ricordi, M.D., of the University of Miami's Diabetes Research Institute; Phillip J. O'Connell, M.D., and Wayne J. Hawthorne, M.D., of the National Pancreas Transplant Institute of the University of Sydney in Australia.

About Joslin Diabetes Center
Joslin Diabetes Center, dedicated to conquering diabetes in all of its forms, is the global leader in diabetes research, care and education. Founded in 1898, Joslin is an independent nonprofit institution affiliated with Harvard Medical School. Joslin research is a team of more than 300 people at the forefront of discovery aimed at preventing and curing diabetes. Joslin Clinic, affiliated with Beth Israel Deaconess Medical Center in Boston, the nationwide network of Joslin Affiliated Programs, and the hundreds of Joslin educational programs offered each year for clinicians, researchers and patients, enable Joslin to develop, implement and share innovations that immeasurably improve the lives of people with diabetes. As a nonprofit, Joslin benefits from the generosity of donors in advancing its mission. For more information on Joslin, call 1-800-JOSLIN-1 or visit www.joslin.org.


Related Diabetes News

Diabetes is an independent predictor of acute organ failure and subsequent death
Insulin resistance in early teens may predict diabetes
Low-fat vegan diet rivals oral diabetes medications
Conjugated linoleic acids in dairy products targets diabetes
TrialNet - Can Type 1 diabetes be prevented?
Infections Link With diabetes
Netrins hold potential for treating diabetes
Coffee might reduce risk of type 2 diabetes
Race may be risk factor for insulin resistance
Impaired blood vessel responses seen in children of diabetics


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us