XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
  Diabetes
   NIDDM
   Insulin Resistance
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Diabetes Channel
subscribe to Diabetes newsletter

Latest Research : Endocrinology : Diabetes

   DISCUSS   |   EMAIL   |   PRINT
Why Pancreatic Beta Cells Die
Mar 7, 2005, 08:12, Reviewed by: Dr.

�Clearly, the occasional misfolding of the insulin precursor molecule doesn't faze the cell. But abundant production of misfolded forms, and the resulting effect on beta cells, may be an important factor in diabetes�

 
Like pieces of origami that get mangled during folding, some insulin molecules get produced in bungled forms � as well as the correct form � inside the cells of the pancreas, new research shows.

But that misfolding occurs far more often in the cells of mice that must overproduce insulin, as people with type 2 diabetes do, than those without, the researchers from the University of Michigan and Pennsylvania State University report.

And, they find, the incorrectly folded forms of insulin can't leave their production site inside the cell nearly as easily as the correct form. The resulting buildup of misfolded molecules inside the cell may also be enough to stress its cleanup mechanisms � and may even contribute to the cell's death.

The discovery, published early online by the Journal of Biological Chemistry, may help explain why people with all forms of diabetes eventually make less insulin and experience the death of insulin-producing cells in the pancreas.

The destruction of pancreatic beta calls is the hallmark of both type 1 (juvenile) and late-stage type 2 (adult) diabetes.

�Clearly, the occasional misfolding of the insulin precursor molecule doesn't faze the cell. But abundant production of misfolded forms, and the resulting effect on beta cells, may be an important factor in diabetes,� says senior author Peter Arvan, M.D., Ph.D., the Brehm Professor and Chief of the Metabolism, Endocrinology & Diabetes Division at the U-M Medical School.

Adds lead author and U-M research associate Ming Liu, M.D., Ph.D., �It's an exciting first step, but more research is needed to better understand this effect.�

The new U-M research focuses on proinsulin, the molecule made in the endoplasmic reticulum area of the cell that later gets chopped to make insulin. Just seconds after proinsulin is made, the long molecule folds like origami, as six sulfur atoms within the molecule pair up to form three disulfide bonds. The locations of those sulfur atoms, and the bonds, have remained the same throughout the evolution of mammals, likely because of insulin's importance in the body's metabolic system.

For the first time ever, the U-M researchers were able to show that normal rat and human cells produce misfolded, as well as normally folded, proinsulin molecules. They made the discovery by separating proinsulin from cells, and analyzing the molecules using a special technique that allowed them to see when the disulfide pairs were mismatched.

They also showed far higher levels of misfolded proinsulin in mice with gene mutations that made them prone to diabetes, and in mutants of proinsulin itself. Some of the mutants made no normally-folded insulin at all.

Previously, scientists have suspected � but have been unable to show � that some proinsulin is misfolded in normal, and diabetic, beta cells. The U-M and Penn State team was able to demonstrate the effect by using a form of a technique called electrophoresis that let them separate the different kinds of proinsulin without denaturing the disulfide bonds. The specific technique they used is called non-reducing tris-tricine-urea-SDS-PAGE.

The team examined proinsulin production in pancreatic islet cells from normal rats, from cells that made proinsulin using a human gene, and from mice that are prone to diabetes.

One mouse strain, called Akita, has a gene mutation that leads to the production of proinsulin that lacks a key amino acid and interferes with the function of any normal insulin made in the cell; this is called a dominant-negative diabetes and is similar to a rare form of type 2 diabetes that occurs in young adults.

Because this strain of rat creates little or no functioning insulin, it can be used as a model for human type 1 diabetes, in which the pancreas stops producing insulin. Another diabetic mouse had been bred to lack a gene called PERK, which limits the number of beta cells in the pancreas, leading to diabetes.

In the normal and transgenic cells, the electrophoresis results showed that three kinds of proinsulin were made � a large quantity of normal molecules, and smaller quantities of two �isomers� or variations.

When the researchers looked at the secretion, or the ability of the proinsulin to leave the endoplasmic reticulum and be prepared for entry into the bloodstream, they found that the normal proinsulin was almost always secreted � but less than half of the two isomer forms was secreted.

The researchers also created mutations in the proinsulin gene beyond the one that causes the defect in Akita mice. When the mutation affected one of the less-important disulfide bonds, the result was the production of a small quantity of proinsulin that could still be secreted, and a large quantity of proinsulin that was secreted less than half the time.

But when the mutation interfered with the most important disulfide bond, none of the resulting proinsulin was secreted.

The researchers also found evidence that some of the misfolded proinsulin was �cleaned up� by the cells; when they interfered with the cleanup mechanism, the molecules were still detectable hours later.

In the PERK-knockout mice, which over-produce insulin for the first few weeks of life before starting to lose their beta cells, the situation was different. When compared with normal mice, the PERK-knockout mice made far more proinsulin, especially when their blood glucose was kept high � and under those conditions, more proinsulin was misfolded than in other mice.

Although the new research didn't directly show that the misfolded proinsulin molecules are toxic to beta cells, Arvan says, the results are consistent with that theory. �We've made the first step of showing that these misfolded forms are made under normal conditions, and in higher abundance under diabetic condition,� he says. �The next step is to see how that affects cell function.�

Arvan and his team are continuing their work with help from a major gift by Bill and Delores Brehm, of McLean, Va. The Brehms gave $44 million to U-M in November to support research and facilities aimed at finding a cure for type 1diabetes, which Dee Brehm has had for more than 50 years.
 

- Journal of Biological Chemistry, Papers in Press, online February 2005; 10.1074/jbc.C400475200
 

University of Michigan

 
Subscribe to Diabetes Newsletter
E-mail Address:

 

The current research was funded by the National Institutes of Health and the American Diabetes Association. In addition to Arvan and Liu, the authors include Yulin Li and Douglas Cavener of the Department of Biology at the Pennsylvania State University.

Related Diabetes News

Diabetes is an independent predictor of acute organ failure and subsequent death
Insulin resistance in early teens may predict diabetes
Low-fat vegan diet rivals oral diabetes medications
Conjugated linoleic acids in dairy products targets diabetes
TrialNet - Can Type 1 diabetes be prevented?
Infections Link With diabetes
Netrins hold potential for treating diabetes
Coffee might reduce risk of type 2 diabetes
Race may be risk factor for insulin resistance
Impaired blood vessel responses seen in children of diabetics


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us