From rxpgnews.com

Endocrinology
Identification of Tomosyn as an Inhibitor of Neurosecretion
By PLoS Genetics
Jul 25, 2005, 17:13

Genetic screens are commonly used to figure out which genes are involved in a biological process. The first step in a genetic screen is to isolate mutant animals that are defective in the process being studied. The next step is to find which of the thousands of genes has the mutation that causes the observed defect.

Positional cloning, the tried-and-true method for locating mutations, is slow and expensive. The authors propose using microarray hybridizations to speed the process. Their approach relies on the fact that a large fraction of the mutations found in screens are the results of premature stop codons, a particularly severe type of mutation. In cells, messages containing premature stop codons are rapidly destroyed by a protective pathway, called nonsense-mediated decay, thus making them directly detectable by microarray hybridization.

The authors apply this strategy retrospectively to known mutants in Caenorhabditis elegans, Arabidopsis, and mouse. They identify two uncharacterized mutations in C. elegans, including one, tom-1, found in a forward genetic screen for enhancers of neurotransmission.

Interestingly, their characterization of tom-1 mutants suggests that the highly conserved protein tomosyn inhibits neurotransmission in neurons. This study shows that microarray hybridizations will help reduce the time and effort required for positional cloning.

All rights reserved by www.rxpgnews.com