XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
  X Chromosome
  Genetic Disorders
  Cloning
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Genetics Channel
subscribe to Genetics newsletter

Latest Research : Genetics

   DISCUSS   |   EMAIL   |   PRINT
Missing Sequence of Y chromosome may contain genes controlling stature and tumor development
Jan 15, 2005, 10:17, Reviewed by: Dr.



 
Scientists report today in the journal Genome Research that they have successfully cloned and characterized a previously intractable DNA sequence: a 554-kilobase-pair genomic segment near the centromere of the human Y chromosome. This sequence contains eight putatively active genes that could be implicated in sex-associated height differences and gonadal tumor development.

This pericentromeric gap was one of the few holes remaining in the "finished" sequence of the human genome reported last October by the International Human Genome Sequencing Consortium. This "finished" sequence was the culmination of a 13-year effort to elucidate the order and orientation of 2.85 billion basepairs that comprise the human genome. The high-quality sequence spanned more than 99% of the euchromatic (gene-containing) portion of the genome with an accuracy of 99.999%, but despite this accomplishment, substantial sections of chromosomal sequences were still missing.

The Y chromosome, a sex chromosome that is specific to the human male, has posed a particular challenge to researchers attempting to decode its sequence. It contains an extraordinary abundance of repetitive elements, including transposons and tandem arrays of satellite sequences. This highly repetitive, transcriptionally dormant genomic landscape, termed "heterochromatin," defines approximately two-thirds of the Y chromosome, including a section spanning the centromere. Such repetitive sequences, although not recalcitrant to cloning, are laborious to assemble, requiring meticulous analysis of complex repeated sequences.

In this case, the challenge was undertaken by a team of scientists led by Gudrun Rappold, Ph.D., Professor of Human Genetics at the University of Heidelberg in Germany. Their manuscript describing this work, published online today and in the February print issue of Genome Research (www.genome.org), presents the sequencing and analysis of 554 kilobases of previously uncharacterized sequence from the pericentromeric region of the Y chromosome. This sequence contains a 450-kilobase "euchromatic island" with eight presumably active genes flanked by repetitive satellite sequences.

To ensure that this 554-kilobase sequence was in fact missing from the "finished" human genome sequence and was not a structural polymorphism present only in a subset of males in the human population, members of Rappold's laboratory – including Stefan Kirsch, Ph.D., lead author on the paper – tested 100 men of different ethnic origin for the presence of this 554-kilobase fragment. Indeed, the sequence was present in all 100 individuals tested, but not in any female controls, confirming that this sequence was a fundamental part of the Y chromosome.

More surprising, however, was Rappold's finding that this "missing" sequence was not unique to the Y chromosome. Rather, this sequence exhibited between 95-99% homology to sequences on exactly half (11 of 22) of the other chromosomes in the human genome, including the pericentromeric regions of autosomes (non-sex chromosomes) 1, 2, 3, 4, 9, 10, 11, 14, 15, 16, and 22. This remarkable similarity can be attributed to segmental duplications, a phenomenon whereby large portions of the genome are copied during evolution. Segmental duplications, which emerged during the past 30 million years of primate evolution, are significantly enriched in subtelomeric and pericentromeric sequences, and now comprise approximately 5% of the human genome, were considered to be one of the biggest obstacles to finishing the human genome sequence. "The identification of these segmental duplications suggests an underrepresentation of pericentromeric regions of the acrocentric chromosomes in the current human genome sequence," Rappold pointed out.

The current study was designed as part of a long-term effort to characterize the molecular genetic basis for Y-chromosome-linked phenotypes. Rappold and colleagues had previously physically mapped the GCY locus, which is thought to be the genetic determinant of sex-related stature differences in humans and is in close proximity to the Y centromere. In addition, the GBY, or gonadoblastoma locus, which is responsible for development of tumors associated with the undifferentiated gonad, has been genetically mapped to the region. Because the "missing" sequence described in this study contained eight putatively active genes, further functional testing of these genes may reveal insights into the genetic basis for stature and gonadoblastoma.
 

- The article referenced here is published online as a "Genome Research in Advance" paper today and will appear in the February print issue of Genome Research. The citation for the article is as follows: Kirsch, S., Weiß, B., Miner, T.L., Waterston, R.H., Clark, R.A., Eichler, E.E., Münch, C., Schempp, W., and Rappold, G. 2005. Interchromosomal segmental duplications of the pericentromeric region on the human Y chromosome. Genome Res. 15: 195-204.
 

Genome Research

 
Subscribe to Genetics Newsletter
E-mail Address:

 

A copy of the paper is available upon request.

About Genome Research:
Genome Research (www.genome.org) is an international, monthly, peer-reviewed journal published by Cold Spring Harbor Laboratory Press. Launched in 1995, it is one of the five most highly cited primary research journals in genetics and genomics. The journal publishes novel genome-based studies and cutting-edge methodologies in comparative and functional genomics, bioinformatics, proteomics, evolutionary and population genetics, systems biology, epigenetics, and biotechnology.

Cold Spring Harbor Laboratory Press is an internationally renowned publisher of books, journals, and electronic media, located on Long Island, New York. It is a division of Cold Spring Harbor Laboratory, an innovator in life science research and the education of scientists, students, and the public. For more information, visit www.cshlpress.com.



Related Genetics News

New research into csd genes could help designing strategies for breeding honey bees
Williams Syndrome, the brain and music
Genetic mutation identified as cause of cranio-lenticulo-sutural dysplasia
Chance Fluctuations in mRNA Output in Mammalian Cells
Transposon Silencing Keeps Jumping Genes in Their Place
GATA2 - predicting susceptibility to coronary artery disease
Exploring genetics of congenital malformations
Genome insertions and deletions (INDELs) provide expanded view of human genetic differences
BRIT1 gene identified as protector of DNA
FDA Approves Idursulfase As First Treatment for Hunter Syndrome


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us