XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
  X Chromosome
  Genetic Disorders
  Cloning
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Genetics Channel
subscribe to Genetics newsletter

Latest Research : Genetics

   DISCUSS   |   EMAIL   |   PRINT
Improved Statistical Tools Reveal Many Linked DNA Loci
Aug 31, 2005, 02:06, Reviewed by: Dr.

As opposed to standard methods, the authors show that their approach is able to assess true joint linkage of two loci to an expression trait, while requiring substantially less computation.

 
Using traditional statistical tools to analyze the modern wealth of biological data is a bit like trying to move a muscle car with a buggy whip�you're not likely to get anywhere very fast. The problem is perhaps most acute in the quest to understand how genes interact to regulate one another's expression. The amount of RNA made by any one gene is likely influenced by DNA at dozens of loci, or locations around the genome. Such loci are often situated within genes that participate in the same pathway as the gene being influenced, and a central goal is to understand this network of mutually influential genes and loci. Consider piecing together this puzzle for each of the many thousands of genes and many thousands of potentially influential loci, and the old analytical tools simply can't keep up. In this issue of PLoS Biology, John Storey and colleagues tackle the challenge with a new approach.

The authors began by mating two strains of yeast that have minor differences in their DNA at more than 3,000 loci�creating over 3,000 markers�and then tracking the inheritance of these markers in the yeast offspring. Because the two genomes randomly reshuffle upon mating, any single offspring will contain some random combination of marker outcomes from each parent. The authors also examined the amount of RNA produced by over 6,000 individual genes in each offspring. The next step was to determine how these two large sets of data�variations at specific loci and variations in expression of specific genes�were correlated.

Straightforward statistical tests performed on each gene's expression revealed the single most influential location in the DNA. But such tests don't reveal the more complicated reality that any single gene is likely to be influenced by more than one locus. Linking expression of a single gene (or �expression trait,� in genetic parlance) to more than one locus has been stymied by the inability of conventional statistical approaches to cope with the mountains of data involved. Not only is an exhaustive pair-by-pair testing of all possible interactions computationally demanding, but it can also be very difficult to distinguish whether elevated expression is due to one or both of the loci being tested. The problem becomes exponentially harder as more potentially linked loci are tested.

To overcome the limitations of standard approaches, Storey et al. used a novel statistical approach that exploited what they had the most of�data. They began by determining the single most significant locus for each expression trait. They then moved on to the next most significant locus for that trait, but tested its linkage (that is, its influence on expression) with the assumption that the first locus was also linked. The ability to assign a �probability of linkage� to the first locus greatly simplified the calculations for the subsequent locus, reducing by almost a thousand-fold the number of possibilities that needed to be tested.

As opposed to standard methods, the authors show that their approach is able to assess true joint linkage of two loci to an expression trait, while requiring substantially less computation. In addition, they found that about one in seven expression traits is controlled by �epistatic,� or hierarchical, relationships among the two loci, while the standard method revealed none. This method can be adapted to search for even larger numbers of linked loci, to provide insights into the many interlocking pathways that make up the gene regulatory network, and ultimately result in the organism itself.
 

- (2005) Improved Statistical Tools Reveal Many Linked Loci. PLoS Biol 3(8): e294
 

PDF - Full text

 
Subscribe to Genetics Newsletter
E-mail Address:

 

DOI: 10.1371/journal.pbio.0030294

Published: July 26, 2005

Copyright: � 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License


Related Genetics News

New research into csd genes could help designing strategies for breeding honey bees
Williams Syndrome, the brain and music
Genetic mutation identified as cause of cranio-lenticulo-sutural dysplasia
Chance Fluctuations in mRNA Output in Mammalian Cells
Transposon Silencing Keeps Jumping Genes in Their Place
GATA2 - predicting susceptibility to coronary artery disease
Exploring genetics of congenital malformations
Genome insertions and deletions (INDELs) provide expanded view of human genetic differences
BRIT1 gene identified as protector of DNA
FDA Approves Idursulfase As First Treatment for Hunter Syndrome


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us