XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
  X Chromosome
  Genetic Disorders
  Cloning
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Genetics Channel
subscribe to Genetics newsletter

Latest Research : Genetics

   DISCUSS   |   EMAIL   |   PRINT
How Position Affects Gene Expression in the Nucleus
Mar 4, 2005, 23:07, Reviewed by: Dr.

What is actually visible is chromatin, a combination of naked DNA and proteins that associate with it. It can exist in two forms: euchromatin and heterochromatin. Actively expressed chromosomal regions (loci) are predominantly located within euchromatin, while loci within heterochromatic regions are silenced.

 
Control of gene expression plays a role in determining cell fate, differentiation, and the maintenance of specific cell lineages. In the absence of regulation, aberrant gene expression can lead to developmental defects and disease. As a result, gene expression is highly regulated and that regulation takes many forms. Control mechanisms may be specific to one gene or operate on a gross chromosomal level, ultimately ensuring that genes are expressed at the right time, in the right place.

It is only in the run-up to and during cell division that chromosomes take on the condensed form that enables them to be recognized as discreet structures. During the rest of the cell cycle, interphase chromosomes exist in a relaxed state that at first glance looks like an unraveled ball of wool floating randomly about the nucleus. But a closer look reveals that they are in fact non-randomly organized and compartmentalized, and these groupings have functional ramifications for how genes are expressed or silenced (repressed).

What is actually visible is chromatin, a combination of naked DNA and proteins that associate with it. It can exist in two forms: euchromatin and heterochromatin. Actively expressed chromosomal regions (loci) are predominantly located within euchromatin, while loci within heterochromatic regions are silenced. Genetic and cytological evidence indicates that interaction between euchromatic genes and heterochromatin can cause gene silencing. Getting a gene into position for such an interaction may be achieved in two ways. The first is by changing the gene�s position on the chromosome to bring it very close to expanses of centromeric heterochromatin, thereby increasing the likelihood for interaction. The second is by changing the position of a section of heterochromatin to place it close to a euchromatic gene. The small regions of heterochromatin involved in this second process seem sufficient to mediate long-range interactions between the affected gene and the larger heterochromatic regions near the centromere, but not so large or powerful as to mediate silencing by themselves. In this issue, Brian Harmon and John Sedat study the functional consequences of long-range chromosomal interactions�consequences that have been inferred in several different organisms but until now have not been analyzed on a cell-by-cell basis or directly verified.

Several Drosophila fruitfly mutants have been identified that exhibit cells in the same organ with varied phenotypes (appearance), though their genotypes (DNA instructions) are the same. This occurs through a phenomenon known as position-effect variegation, in which the expression of variegating genes is determined by their position on the chromosome relative to regions of heterochromatin. Working with fruitflies, the authors labeled three variegating genes and areas of heterochromatin with fluorescent probes and visualized expression of the affected genes in tissues where they are normally expressed. Silenced genes, they discovered, are far closer to heterochromatin than expressed genes, indicating that silenced genes interact with heterochromatin while expressed genes do not.

This study of interactions between a gene and heterochromatin in single cells illustrates unequivocally a direct association between long-range chromosomal interactions and gene silencing. The novel cell-by-cell analysis paves the way for further analysis of this phenomenon and will lead to a greater insight into the understanding and functional significance of nuclear architecture.
 

- (2005) Location, Location, Location: How Position Affects Gene Expression in the Nucleus. PLoS Biol 3(3): e106.
 

Full Text PDF of the article

 
Subscribe to Genetics Newsletter
E-mail Address:

 

OI: 10.1371/journal.pbio.0030106

Published March 1, 2005

Copyright: � 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License.

Citation: (2005) Location, Location, Location: How Position Affects Gene Expression in the Nucleus. PLoS Biol 3(3): e106.


Related Genetics News

New research into csd genes could help designing strategies for breeding honey bees
Williams Syndrome, the brain and music
Genetic mutation identified as cause of cranio-lenticulo-sutural dysplasia
Chance Fluctuations in mRNA Output in Mammalian Cells
Transposon Silencing Keeps Jumping Genes in Their Place
GATA2 - predicting susceptibility to coronary artery disease
Exploring genetics of congenital malformations
Genome insertions and deletions (INDELs) provide expanded view of human genetic differences
BRIT1 gene identified as protector of DNA
FDA Approves Idursulfase As First Treatment for Hunter Syndrome


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us