XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
  X Chromosome
  Genetic Disorders
  Cloning
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Genetics Channel
subscribe to Genetics newsletter

Latest Research : Genetics

   DISCUSS   |   EMAIL   |   PRINT
Genomic Analysis may one day be a Primary Diagnostic Tool for Trauma
Mar 18, 2005, 22:30, Reviewed by: Dr.

"It has been clear for approximately two decades that critical injury can trigger the release of immune factors that cause massive inflammation, and this can sometimes overwhelm the body's ability to cope. We have produced a great deal of insight into how those inflammatory responses are generated, and we've tried a number of strategies to block or weaken them, but so far we've had relatively little success."

 
Genomic analysis may one day be a primary diagnostic tool for physicians deciding on a course of treatment for trauma and other critically ill patients in the intensive care unit (ICU), according to a new study by a national collaboration of more than 70 physicians and scientists.

The researchers showed that state-of-the-art techniques for rapidly analyzing changes in activity of all human genes will likely produce useful insights into the health of critically ill patients. The findings, which are available online and will be published in the March 29 issue of the Proceedings of the National Academy of Sciences, make it possible for physicians to begin answering important questions about critical care through genomic analysis.

"It's a very exciting time because our field has experienced such frustration with some of these questions, many of which have important ramifications for how we treat patients," says J. Perren Cobb, M.D., the paper's lead author and associate professor of surgery and of genetics at Washington University School of Medicine in St. Louis.

Nearly 5 million people are admitted to U.S. ICUs every year, and preliminary 2003 National Centers for Disease Control statistics cite accidental injuries and trauma as the fifth leading cause of death for that year. However, despite significant advances in organ support technology, physicians' ability to predict whether or not a given patient will respond to a specific course of treatment has been poor. To address these and other questions, countries such as Canada and Germany have established networks for research in critical care.

The new study, conducted by Cobb and his colleagues in the Inflammation and Host Response to Injury Large Scale Collaboration Program, is a significant step toward establishing such a U.S. research network.

Scientists tested two aspects of applying genomic technology in the ICU: Could the technology detect significant differences in the activity levels of genes in critically ill patients versus healthy patients? And could they establish testing procedures that would prevent local differences in ICUs and research laboratories across the United States from introducing noise or bias into the results?

"We wanted to make sure that we could consistently get the same results from an analysis regardless of where the sample was gathered," Cobb explains.

Researchers applied DNA microarrays, a genomic analysis technology, to blood samples and skeletal muscle from 34 severely injured patients and 23 healthy individuals. Critically ill patients were studied at the University of Washington, Seattle and the University of Rochester. Healthy patients were studied at Washington University at the University of Florida, the University of Rochester, and the Robert Wood Johnson Medical School of the University of Medicine and Dentistry of New Jersey.

Scientists identified key aspects of microarray testing procedures that were vital to obtaining results that could be reproduced regardless of where the studies were conducted, an essential criterion for rigorous science. The protocols they established also move researchers closer to being able to enroll large number of patients in longitudinal studies.

They also showed that genetic analysis technology has achieved levels of sensitivity and resolution sufficient to "see" dramatic changes in gene activity levels that take place in cells in the critically ill. Such changes in gene activity can, for example, reprogram white blood cells, immune system cells that circulate in the bloodstream. This reprogramming alters the relative populations of the different types of white blood cells and the genes they express. One white blood cell, the neutrophil, normally makes up 40 to 60 percent of circulating white blood cells but rises to comprise 80 to 90 percent after critical injury. The new approach will allow the investigators for the first time to monitor neutrophil gene activity genome-wide in injured patients.

In the new era of genetically based critical care research, one focus will be developing a better understanding of how these cells and other factors control inflammatory responses to severe injury.

"It has been clear for approximately two decades that critical injury can trigger the release of immune factors that cause massive inflammation, and this can sometimes overwhelm the body's ability to cope," Cobb says. "We have produced a great deal of insight into how those inflammatory responses are generated, and we've tried a number of strategies to block or weaken them, but so far we've had relatively little success."

As scientists' picture of how multiple genes interact to produce inflammatory responses becomes more complete, they may be able to develop more effective ways to dampen those responses and save lives.

 

- Cobb JP, Mindrinos MN, Miller-Graziano C, Calvano SE, Baker HV, Xiao W, Laudanski K, Brownstein BH, Elson C, Hayden DL, Herndon D, Lowery SF, Maier RV, Schoenfeld D, Moldawer LL, Davis R, Tompkins RG, and Inflammation and Host Response to Injury Large Scale Collaborative Research Program. "Application of genome-wide expression analysis to human health and disease." Proceedings of the National Academy of the Sciences, 102 (13).
 

http://medinfo.wustl.edu/

 
Subscribe to Genetics Newsletter
E-mail Address:

 

Funding from the National Institute of General Medical Sciences supported this research.

The procedures and protocols established for critical care research are available at the group's web site, www.gluegrant.org.

Washington University School of Medicine's full-time and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked second in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.


Related Genetics News

New research into csd genes could help designing strategies for breeding honey bees
Williams Syndrome, the brain and music
Genetic mutation identified as cause of cranio-lenticulo-sutural dysplasia
Chance Fluctuations in mRNA Output in Mammalian Cells
Transposon Silencing Keeps Jumping Genes in Their Place
GATA2 - predicting susceptibility to coronary artery disease
Exploring genetics of congenital malformations
Genome insertions and deletions (INDELs) provide expanded view of human genetic differences
BRIT1 gene identified as protector of DNA
FDA Approves Idursulfase As First Treatment for Hunter Syndrome


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us