XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
  AIDS
  Influenza
  MRSA
  Tuberculosis
  Shigella
  HCV
  SARS
  Ebola
  Dengue
  Malaria
  Pertussis
  Mumps
  Prion Diseases
  Small Pox
  Anthrax
  Leishmaniasis
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Infectious Diseases Channel
subscribe to Infectious Diseases newsletter

Latest Research : Infectious Diseases

   DISCUSS   |   EMAIL   |   PRINT
Forecasting the Path of a Raccoon Rabies Epidemic
Mar 4, 2005, 23:07, Reviewed by: Dr.

A new strain of raccoon rabies started spreading throughout the eastern United States in the mid-1970s, after raccoons caught in Florida were released along the West Virginia�Virginia border to replenish hunting stocks.

 
Rabies recently hit the national headlines when a Wisconsin teenager survived after showing full-blown symptoms. Even more remarkable, the girl�who was bitten by a bat�recovered after receiving a novel therapy, since doctors felt her case was too advanced for the standard rabies inoculations to work. Rabies is nearly always fatal if not treated immediately, and continues to pose a serious public health threat. Though most rabies fatalities in the United States stem from bat bites, far more people are treated for raccoon rabies.

A new strain of raccoon rabies started spreading throughout the eastern United States in the mid-1970s, after raccoons caught in Florida were released along the West Virginia�Virginia border to replenish hunting stocks. Some of the imports carried a rabies variant that caused an outbreak in local populations and has been steadily expanding ever since. In 1990, raccoons topped the list of most often reported rabid mammal.

Controlling this re-emerging public health threat depends on predicting the spatial dynamics of the disease�where new outbreaks might occur and how the virus might spread. Toward this end, Leslie Real and colleagues work on probabilistic simulation models that calculate the effects of various factors, such as local transmission rates between townships, ecological barriers to transmission, and long-distance �translocation� rates between townships. (The deliberately released Florida raccoons were one such translocation, but raccoons have also been known to hitch rides on garbage trucks.) As reported elsewhere, these models previously accurately reflected rabies spread in both Connecticut and New York. In a new study reported in PLoS Biology, Real and colleagues apply their model to the likely spread of rabies in Ohio�a potential gateway for spread throughout the Midwest�and find that raccoon rabies could spread throughout the state in just three years.

One strategy for limiting rabies spread is to establish vaccine corridors by distributing vaccine baits�vaccine doses hidden in fishmeal�to wild raccoons. This cordon sanitaire strategy limited rabies in Ohio to sporadic cases from 1997 until 2004, when a rabid animal was detected�11 kilometers beyond the buffer zone�in northeastern Ohio. The authors had previously shown that local transmission was significantly reduced when townships were separated by geographical barriers�the Connecticut River in Connecticut and the Adirondack Mountains in New York. In modeling the likely transmission path in Ohio, the authors incorporated the likely effect of Ohio�s five major rivers on transmission from local points along the Pennsylvania or West Virginia border.

Given Ohio�s topography (three of its rivers run along the southern and eastern border) and a single point of emergence in the northeast, the authors adjusted their simulations to estimate the potential impact of translocations. Even without the occasional garbage truck ride, because of the lack of ecological barriers in central Ohio, the simulations predict that rabies will spread far faster in Ohio than in New York and Connecticut.

Factoring in those garbage truck rides, the scenario is considerably bleaker: rabies would take just 33 months to spread across central Ohio�compared to 48 months to cross the much smaller state of Connecticut�and cover the state in 41 months. This transmission rate�100 kilometers/year�significantly surpasses previous estimates, which range from 30 to 60 kilometers/year. The potential for such rapid spread, if unchecked, �is quite alarming,� the authors warn. But they also point out that the path of a real epidemic would likely fall somewhere between these two scenarios, given the unpredictable nature of translocations. The authors also simulated potential breech points in the vaccine corridor and found that the Ohio and Muskingum rivers halted viral advance initially. But a raccoon can certainly cross a bridge when the opportunity arises, so any delays would likely be temporary.

Given the unpredictable nature of rabies transmission�challenging efforts to identify potential leaks in vaccine corridors and sites of dispersal�the authors� simulations provide a valuable resource for anticipating alternate outbreak scenarios and preparing multiple game plans to prevent or contain them. They also indicate the best sites for establishing a new vaccine barrier. And given how fast raccoon rabies could spread, Real and colleagues make a strong case that halting its western march depends on a strategy based on early detection and high-powered intervention programs�a sensible approach for any infectious disease.
 

- (2005) Forecasting the Path of a Raccoon Rabies Epidemic . PLoS Biol 3(3): e115.
 

Full Text PDF of the article

 
Subscribe to Infectious Diseases Newsletter
E-mail Address:

 

DOI: 10.1371/journal.pbio.0030115

Published March 1, 2005

Copyright: � 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License.


Related Infectious Diseases News

Keeping A3G in action represents a new way to attack HIV
Fighting HIV With HIV Virus Itself
Retina can provide a very reliable way of diagnosing cerebral malaria
Are influenza vaccines worth the effort?
A light daily exercise program may reduce the incidence of colds
HIV exploits competition among T-cells
Mass vaccination would not be necessary in the event of a smallpox bioterrorist attack
How Ebola and Marburg viruses cause disease
Transmission of MRSA Linked to Previous Intensive Care Unit Room Occupants
Harmless GB Virus type C (GBV-C) protects against HIV infection


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us