XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
  Virology
  Bacteriology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Alex Loukas and colleagues

Microbiology Channel
subscribe to Microbiology newsletter

Latest Research : Microbiology

   DISCUSS   |   EMAIL   |   PRINT
Getting Closer to a Vaccine for Hookworm
Oct 7, 2005, 15:12, Reviewed by: Dr.

This result of vaccination against APR-1 shows the best efficacy so far reported for a recombinant vaccine aimed at reducing hookworm egg counts, intestinal worm burdens, and hookworm-induced blood loss, say the authors. They suggest that vaccination with APR-1 damaged the parasite's intestine and resulted in decreased blood intake by feeding worms, and, hence, reduced blood loss from the dogs.

 
Hookworms are intestinal parasites of mammals, including humans, dogs, and cats; in humans, these infections are a leading cause of intestinal blood loss and iron-deficiency anemia. These infections occur mostly in tropical and subtropical climates, and are estimated to infect about 1 billion people worldwide—about one-fifth of the world's population. People who have direct contact with soil that contains human feces in areas where hookworm is common are at high risk of infection; because children play in dirt and often go barefoot, they are at highest risk.

However, since transmission of hookworm infection requires development of the larvae in soil, hookworm cannot be spread person to person. Anthelminthic chemotherapy with benzimidazole drugs is effective at eliminating existing adult parasites. But since reinfection occurs rapidly after treatment, making a vaccine against hookworm disease is a public health priority. Previous animal vaccine studies have had mixed results. Dogs have been successfully vaccinated against infection with the dog hookworm Ancylostoma caninum by immunization with attenuated third-stage infective larvae (L3). Varying levels of efficacy have been reported for vaccination against the major antigens secreted by the same larval stage in hamsters and dogs. However, only partial reductions in parasite load have been reported. In addition, protective antigens from the larval stage are only expressed in larvae, not in adult worms; hence, antibodies against L3 secretions are useless against adult stage parasites in the gut.

In this month's PLoS Medicine, Alex Loukas and colleagues suggest that the ideal hookworm vaccine would be a mixture of two recombinant proteins, targeting both the infective larva and the blood-feeding adult stage of the parasite. Such a vaccine would limit the amount of blood loss caused by feeding worms and maintain normal levels of hemoglobin, said the authors. This outcome is particularly important in young children and women of childbearing age, where menstrual and, particularly, fetal hemoglobin demands are high.

Of the different proteins expressed by blood-feeding parasitic helminths, proteolytic enzymes have shown promise as intervention targets for vaccine development. A previous study in which dogs were vaccinated with a catalytically active recombinant cysteine hemoglobinase, Ac-CP-2, induced antibodies that neutralized proteolytic activity, and provided partial protection to vaccinated dogs by reducing egg output and worm size, but there were not significant reductions of adult worm burdens or blood loss.

In the present study, the researchers found that vaccination of dogs with recombinant Ac-APR-1, an aspartic hemoglobinase that initiates the hemoglobin digestion cascade in hookworms, induced antibody and cellular responses, and resulted in significantly reduced hookworm burdens and fecal egg counts in vaccinated dogs compared to control dogs after challenge with infective larvae of A. caninum. Most importantly, vaccinated dogs were protected against blood loss and most did not develop anemia, the major pathologic sequelae of hookworm disease.

The authors went on to show that IgG from vaccinated animals decreased the catalytic activity of the recombinant enzyme in vitro, and the antibody bound in situ to the intestines of worms recovered from vaccinated dogs, implying that the vaccine interfered with the parasite's ability to digest blood.

This result of vaccination against APR-1 shows the best efficacy so far reported for a recombinant vaccine aimed at reducing hookworm egg counts, intestinal worm burdens, and hookworm-induced blood loss, say the authors. They suggest that vaccination with APR-1 damaged the parasite's intestine and resulted in decreased blood intake by feeding worms, and, hence, reduced blood loss from the dogs.

The authors go on to suggest that the optimal hookworm vaccine would combine two elements: one to prevent L3 from developing into adult blood-feeding hookworms, and one to block the establishment, survival, and fecundity of the adult parasites in the intestine. Achieving both goals would require a vaccine comprised of an L3 antigen, such as ASP-2, which is now under clinical development, and an adult gut protease, such as APR-1.

These results have implications for human hookworm vaccine development; the authors finish by saying that there is now enough evidence to conclude that the counterpart vaccine for the major human hookworm Necator americanus (Na-APR-1) should be developed and entered into human clinical trials.
 

- (2005) Getting Closer to a Vaccine for Hookworm. PLoS Med 2(10): e369
 

PDF of the Source Article at PLoS Medicine

 
Subscribe to Microbiology Newsletter
E-mail Address:

 

DOI: 10.1371/journal.pmed.0020369

Published: October 4, 2005

Copyright: © 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License.

PLoS Medicine is an open-access journal published by the nonprofit organization Public Library of Science.


Related Microbiology News

Gut Bacteria Cospeciating with Plataspid stinkbug
How West Nile virus evades immune defenses
An infectious agent of deception, exposed through proteomics
Gram positive bacterial membrane mystery solved
E.Coli uses 'shock absorbers' to combat adverse conditions
Innovative method for creating a human cytomegalovirus vaccine outlined
Cracking Virus Protection Shield
Viruses trade-off between survival and reproduction
Smart Petri Dish could rapidly screen new drugs for toxic interactions
Master key to yeasts' pathogenic lifestyles discovered


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us