XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
  Memory
  Regeneration
  Stroke
  Brain Diseases
  Headache
  Spinal Cord Diseases
  Demyelinating Diseases
  Neurodegenerative Diseases
  Taste
  Trigeminal Neuralgia
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Science

Neurosciences Channel
subscribe to Neurosciences newsletter

Latest Research : Neurosciences

   DISCUSS   |   EMAIL   |   PRINT
The "protomap" and "protocortex" theories of brain development are dead
Nov 12, 2005, 19:19, Reviewed by: Dr.

"Recent evidence has altered researchers' understanding of how cortical areas form, connect with other brain regions, develop unique processing networks and adapt to changes in inputs. Understanding basic mechanisms of cortical development is central to understanding disorders of development."

 
A leading neuroscientist at MIT and one from the University of California at San Francisco (UCSF) report in the Nov. 4 special issue of Science dedicated to the brain that the controversy is over: The "protomap" and "protocortex" theories of brain development are dead.

The cerebral cortex is a sheet of around 10 billion neurons divided into distinctly separate areas that process particular aspects of sensation, movement and cognition. To what extent are these areas predetermined by genes or shaped by the environment? The protomap and protocortex theories developed before 1990 claimed, respectively, that the task-specific regions of the cortex are spawned by a zone of "originator" cells; or that long nerve fibers from the thalamus, a large ovoid mass that relays information to the cortex from other brain regions, are activated by external stimuli to impose identity on the homogeneous blob.

New evidence indicates that the development of cortical areas involves "a rich array of signals," an interwoven cascade of developmental events, some internal and some external, according to co-authors Mriganka Sur, Sherman Fairchild Professor of Neuroscience at the Picower Institute for Learning and Memory and the MIT Department of Brain and Cognitive Sciences, and John L. R. Rubenstein of UCSF.

"Recent evidence has altered researchers' understanding of how cortical areas form, connect with other brain regions, develop unique processing networks and adapt to changes in inputs," Sur said. "Understanding basic mechanisms of cortical development is central to understanding disorders of development."

Sur, chair of the Department of Brain and Cognitive Sciences at MIT, is leading an ambitious, multifaceted approach to understanding the genetic, molecular and behavioral aspects of autism.

In the Science review article, "Patterning and Plasticity of the Cerebral Cortex," Sur and Rubenstein point out that transcription factors are key. A transcription factor is a protein that binds DNA at a specific site where it regulates transcription, or the process of copying genetic material.

In the brain's early prenatal development, transcription factors control the birth and growth of new neurons, neurons' movement and connectivity within the brain, and which ones live and which are killed off.

Later, at a critical point in development, activity in the form of outside stimulation refines the brain's topography and networks to create the specific functions and areas of the postnatal mammalian brain.
 

- Nov. 4 special issue of Science dedicated to the brain
 

web.mit.edu

 
Subscribe to Neurosciences Newsletter
E-mail Address:

 

This work is supported by the National Institutes of Health, the Marcus Fund and the Simons Foundation.

Related Neurosciences News

Memories: It's all in the packaging
New Effort to Treat Stroke More Effectively
Atrial Fibrillation linked to Reduced Cognitive Performance
Human Memory Gene Identified
Laser Analysis Points to Brain Pigment's Hidden Anatomy
Cause of nerve fiber damage in multiple sclerosis identified
REGARDS Study: Stroke Symptoms Common Among General Population
Signals That Tell Fly Neurons to Extend or Retract
Potential link between celiac disease and cognitive decline discovered
Progesterone for Traumatic brain injury??


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us