XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
  Memory
  Regeneration
  Stroke
  Brain Diseases
  Headache
  Spinal Cord Diseases
  Demyelinating Diseases
  Neurodegenerative Diseases
  Taste
  Trigeminal Neuralgia
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Neurosciences Channel
subscribe to Neurosciences newsletter

Latest Research : Neurosciences

   DISCUSS   |   EMAIL   |   PRINT
Brake-through discovery in nerve regeneration
Feb 3, 2005, 00:20, Reviewed by: Dr.

"Given the limited expression of p75, the discovery of TAJ function is an important step for understanding the regulation of axon regeneration," wrote Mi and colleagues. "The implication that more than one TNF receptor member may be involved in myelin inhibition adds a new level of complexity to designing therapeutic strategies for treating CNS injury."

 
Among the principal obstacles to regenerating spinal cord and brain cells after injury is the "braking" machinery in neurons that prevents regeneration. While peripheral nerves have no such machinery and can readily regenerate, central nervous system (CNS) neurons have their brakes firmly in place and locked. Now, two groups of scientists have independently found a new component of that braking machinery, adding to understanding of the regulation of neuronal regeneration and of possible treatments to switch off the brakes on regrowth of spinal cord or brain tissue.

The two groups--one group led by Jong Bae Park, Glenn Yiu, and colleagues from Children's Hospital Boston and the other led by Sha Mi and colleagues of Biogen Idec, Inc.--discovered that a protein variously called TAJ or TROY acts as an important part of the receptor on neurons that responds to growth-inhibitory molecules in myelin. Specifically, these molecules prevent the growth of the cablelike axons of injured neurons. Myelin is the fatty sheath that encases neurons and acts as an insulator and aid to the transmission of nerve impulses.

Researchers knew that CNS neurons had receptors on their surface that accepted the inhibitory molecules--like a key fitting a lock--and switched-on inhibitory signaling within the neuron. They had also shown that a protein called p75 could function as a component of the complex of proteins that make up this receptor. The puzzle, however, was that p75 is not widely made in the adult neurons in which this inhibitory receptor complex is known to function.

The two research groups turned their attention to TAJ/TROY because it is a member of the same family of receptor proteins--called TNF receptors--as p75. Their experiments revealed that TAJ/TROY is produced throughout the adult brains of mice. Also, they found that TAJ/TROY readily fits into the inhibitory receptor complex and that the resulting receptor complex switches-on the inhibitory machinery within neurons. Also, they found that treating neurons with a nonfunctional version of TAJ/TROY abolished neurons' response to the "braking" molecules produced by myelin and encouraged neuron growth.

"Given the limited expression of p75, the discovery of TAJ function is an important step for understanding the regulation of axon regeneration," wrote Mi and colleagues.

Wrote Park and colleagues, "The implication that more than one TNF receptor member may be involved in myelin inhibition adds a new level of complexity to designing therapeutic strategies for treating CNS injury." They cited studies showing that TNF receptors are expressed in many types of cells in the CNS and are intimately involved in inflammatory responses that also play a role--perhaps harmful, perhaps beneficial to regeneration or recovery--in regulating response to injury. "Further characterization of the underlying mechanisms of these findings and their relation to myelin inhibition may provide important insights into designing therapeutic strategies to block myelin inhibition and cell death in the context of CNS injury," they wrote.
 

- Publishing in Neuron, Volume 45, Number 3, February 3, 2005, pages 345�351 (Park et al.) and 353�359 (Shao et al.)
 

http://www.neuron.org/

 
Subscribe to Neurosciences Newsletter
E-mail Address:

 

Jong Bae Park, Glenn Yiu, Shinjiro Kaneko, Jing Wang, Jufang Chang, and Zhigang He: "A TNF Receptor Family Member, TROY, Is a Coreceptor with Nogo Receptor in Mediating the Inhibitory Activity of Myelin Inhibitors"

Zhaohui Shao, Jeffrey L. Browning, Xinhua Lee, Martin L. Scott, Sveltlana Shulga-Morskaya, Norm Allaire, Greg Thill, Melissa Levesque, Dinah Sah, John M. McCoy, Beth Murray, Vincent Jung, R. Blake Pepinsky, and Sha Mi: "TAJ/TROY, an Orphan TNF Receptor Family Member, Binds Nogo-66 Receptor 1 and Regulates Axonal Regeneration"

Park et al.: The other members of the research team include Jong Bae Park, Glenn Yiu, Shinjiro Kaneko, Jing Wang, Jufang Chang, and Zhigang He of Children's Hospital and Harvard Medical School. This study was supported by grants from the John Merck Fund and NIH. Shao et al.: The other members of the research team include Zhaohui Shao, Jeffrey L. Browning, Xinhua Lee, Martin L. Scott, Sveltlana Shulga-Morskaya, Norm Allaire, Greg Thill, Melissa Levesque, Dinah Sah, John M. McCoy, Beth Murray, Vincent Jung, R. Blake Pepinsky, and Sha Mi of Biogen Idec, Inc.


Related Neurosciences News

Memories: It's all in the packaging
New Effort to Treat Stroke More Effectively
Atrial Fibrillation linked to Reduced Cognitive Performance
Human Memory Gene Identified
Laser Analysis Points to Brain Pigment's Hidden Anatomy
Cause of nerve fiber damage in multiple sclerosis identified
REGARDS Study: Stroke Symptoms Common Among General Population
Signals That Tell Fly Neurons to Extend or Retract
Potential link between celiac disease and cognitive decline discovered
Progesterone for Traumatic brain injury??


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us