XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
  Memory
  Regeneration
  Stroke
  Brain Diseases
  Headache
  Spinal Cord Diseases
  Demyelinating Diseases
  Neurodegenerative Diseases
  Taste
  Trigeminal Neuralgia
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Neurosciences Channel
subscribe to Neurosciences newsletter

Latest Research : Neurosciences

   DISCUSS   |   EMAIL   |   PRINT
Brain processing of speech sounds is different in some southern English speakers
Feb 25, 2006, 10:10, Reviewed by: Dr. Priya Saxena

"The methods used for this study allowed us to begin investigating the component neural processes involved in the differential behavior of speakers of two dialects of the same language"

 
When Rice University alumna Brianna Conrey was in third grade in Stillwater, Okla., she misspelled "pen" on a test because her teacher unknowingly pronounced it "pin." At the time, Conrey never would have guessed that she would write a senior thesis in college about the brain activity that takes place in people who don't distinguish between similar-sounding words like "pin" and "pen." Nor would she have guessed that her thesis would get published several years later in the journal Brain and Language.

While working on a B.A. in linguistics at Rice, Conrey wanted to study the variation in spoken American English in certain regions of the U.S. "I lived in a lot of different areas of the country as a kid and was exposed to many different ways of talking, so this topic was really fascinating," Conrey said. "We know from sociolinguistics � the study of language variation and change � that a great deal of phonetic variation occurs even within a single language."

She cited as an example a language variation known as a "vowel merger," in which two vowels with different pronunciation in one dialect of a language are merged, or not distinguished in pronunciation, in another dialect. The pin/pen merger, in which "i" and "e" are both pronounced like "i" before nasal sounds like "n" and "m" but not in other contexts, is often heard in Southern states and Texas, where a merged-dialect speaker might sound like they're pronouncing both "pin" and "pen" as "pin" to an unmerged-dialect speaker. The merged-dialect speaker is unlikely to be aware of the lack of distinction between the two sounds.

"Our study was interested in figuring out what happens in the brain when people who speak these different dialects hear similar sounds pronounced," said Conrey, who received funding from the Rice University Undergraduate Scholars Program. She consulted with Rice's Nancy Niedzielski and Geoffrey Potts on how to do the research for her honors thesis. Niedzielski is an assistant professor of linguistics, and Potts is an assistant professor of psychology.

Taking advantage of cognitive neuroscience tools available in Potts' lab, Conrey was able to monitor patterns of brain activity in merged-dialect and unmerged-dialect speakers.

Electrodes placed on the heads of 23 student volunteers recorded the electrical activity in the parietal lobes of their brains when the students viewed a phrase on a computer screen, listened to a word through headphones and then indicated whether the pronounced word matched the word on the computer. For example, the computer would show "Sign the check with a" and then "pen" by itself, and then the volunteer would hear "pin" or "pen" via headphones and have to touch a keypad to indicate whether the spoken word was the same as or different from the single word that flashed on the computer. Half of the spoken words matched the unmerged-dialect pronunciation of the word on the screen, and the other half matched the merged-dialect pronunciation but not the unmerged-dialect.

Conrey had applicants for the study read a paragraph to determine whether they had a merged dialect so she could balance the types of students participating in the study.

"Our results indicated significant behavioral and physiological differences between a merged- and an unmerged-dialect group in evaluating congruity between auditory and visual presentations of words containing vowels that are merging in pronunciation in the merged dialect," Conrey said. The merged-dialect group identified incongruent merger pin/pen stimuli as congruent 59 percent of the time, but the unmerged-dialect group did so only 22 percent of the time. The unmerged-dialect group's failure to get a lower error rate might be due to their exposure to the merger in other dialects, she noted.

The level of brain activity recorded by the electrodes was significantly higher in the unmerged-dialect group. This difference suggests that the merged- and unmerged-dialect groups processed the pin/pen acoustic stimuli differently at a conscious, decisional level that required explicit memory for the previously presented visual stimulus. "The unmerged-dialect group was able to act on discrepancies between the incongruent pin/pen templates and auditory words, but the merged-dialect group was unable to make a distinction between incongruent pin/pen templates and auditory words at a conscious or decisional level," Conrey said.

"The speakers Conrey used for her study have no reason to distinguish between 'pin' and 'pen,' either from a perception or production standpoint, since others in their speech community don't," Niedzielski said. "It's just a matter of what the speakers have been exposed to and the distinctions they're used to making."

Potts noted that previous studies have shown that the Japanese, whose language does not distinguish between the "l" and "r" sounds, will have the same brain response when hearing native English speakers use the "l" and "r" phonemes. "But Brianna's study was the first to show the same effect in dialects of the same language."

After Conrey finished her thesis and graduated from Rice in 2002, she continued her research in Potts' lab to acquire more data for the study and then submitted the paper to the journal Brain and Language, which published it last August.

"The methods used for this study allowed us to begin investigating the component neural processes involved in the differential behavior of speakers of two dialects of the same language," said Conrey, who is now a graduate student at Indiana University in Bloomington.
 

- Journal Brain and Language
 

www.rice.edu

 
Subscribe to Neurosciences Newsletter
E-mail Address:

 



Related Neurosciences News

Memories: It's all in the packaging
New Effort to Treat Stroke More Effectively
Atrial Fibrillation linked to Reduced Cognitive Performance
Human Memory Gene Identified
Laser Analysis Points to Brain Pigment's Hidden Anatomy
Cause of nerve fiber damage in multiple sclerosis identified
REGARDS Study: Stroke Symptoms Common Among General Population
Signals That Tell Fly Neurons to Extend or Retract
Potential link between celiac disease and cognitive decline discovered
Progesterone for Traumatic brain injury??


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us