XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
  Memory
  Regeneration
  Stroke
  Brain Diseases
  Headache
  Spinal Cord Diseases
  Demyelinating Diseases
  Neurodegenerative Diseases
  Taste
  Trigeminal Neuralgia
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Neurosciences Channel
subscribe to Neurosciences newsletter

Latest Research : Neurosciences

   DISCUSS   |   EMAIL   |   PRINT
Mutated PLA2G6 gene triggers neuroaxonal dystrophies
Jun 19, 2006, 01:14, Reviewed by: Dr. Priya Saxena

PLA2G6's discovery means a clinical test can be developed to help families determine their chances of passing the disorders to their children.

 
Oregon Health & Science University researchers have identified the gene behind a group of rare, progressive childhood disorders caused by an abnormal buildup of iron in the brain.

Discovery of the PLA2G6 gene, whose mutated forms trigger several genetic disorders categorized as neuroaxonal dystrophies, could shed light on the nerve cell degeneration that leads to such neurological maladies as Parkinson's and Alzheimer's diseases, both known to be associated with brain iron accumulation.

"If you're a family with a kid with one of these diseases, the impact is clear, specific and personal," said Susan J. Hayflick, M.D., professor of molecular and medical genetics, pediatrics and neurology in the OHSU School of Medicine. But because it may heighten understanding of other, better-known neurological disorders, "To the general population, (the discovery) has a larger impact, and that's a significant benefit."

In a study published online June 18 in the journal Nature Genetics, Hayflick and an international team of geneticists describe PLA2G6's discovery using DNA from families with infantile neuroaxonal dystrophy, or INAD, and a related disorder known as neurodegeneration with brain iron accumulation, or NBIA.

In INAD, also known as Seitelberger disease, symptoms start by age 2 and worsen over time, and include loss of head control and the ability to sit, crawl or walk, as well as deteriorating vision and speech, according to the National Institute of Neurological Disorders and Stroke, a branch of the National Institutes of Health. Children with the disease die between ages 5 and 10.

NBIA, sometimes called Hallervorden-Spatz syndrome, manifests itself between the teen years and adulthood. Symptoms include involuntary muscle contractions, rigidity and spasms in the limbs, face and torso, as well as confusion, disorientation, seizures, stupor and dementia. Rapid deterioration, punctuated by stable periods, lasts one to two months, with the rate of progression correlating with the patient's age – the later the onset, the better the patient fares.

There is no cure nor standard treatment for either disease, which are inherited in a recessive fashion, meaning that both parents must contribute a defective gene to make both copies in the child defective. Incidence is 1 in 500,000 to 1 million.

PLA2G6's discovery means a clinical test can be developed to help families determine their chances of passing the disorders to their children.

"That's a direct outcome of this work," Hayflick said. "There are families who literally are waiting to have this test. They've been waiting for years. To have the option of bringing a child into this world you know won't have to suffer like this is extraordinary for a parent who's been through this. Some of them have had multiple children with the disease."

The disorders are caused by a build-up of iron in the basal ganglia, a cluster of gray-matter tissue structures deep in the brain that control motor function. The iron accumulation causes the branch-like axons that transmit electrical impulses from the nerve cell body to its terminal to swell, interrupting the signal sent to other nerve cells nearby.

PLA2G6 is thought to encode an enzyme that breaks down lipids involved in the reconstruction of a cell's membrane following damage by light and other toxins. When the gene is mutated, lipid metabolism is altered and iron builds up, triggering disease.

"I studied our entire INAD patient population for mutations in this gene and found over 44 different changes in the gene which would lead to disease," said study co-author Shawn Westaway, Ph.D., research assistant professor of molecular and medical genetics at OHSU.

Working with scientists at the University of Birmingham School of Medicine, United Kingdom, Hayflick and Westaway collected DNA from 30 to 40 families affected by the diseases and narrowed the search for the suspect gene to a 100-gene block of DNA on chromosome 22, the second smallest chromosome in humans that contains 500 to 800 genes. The team then looked for genes in the region whose function was suggestive of the symptoms and parts of the body affected by the diseases, and the search was further narrowed to 75 genes.

"You just start sequencing genes and compare healthy people to people with the disease," Hayflick said. "In people with the disease, you see changes that are clearly disease causing."

After scouring the 75 genes, "we finally found mutations in PLA2G6 in a large kindred with multiple generations of affected individuals, and in three other smaller families," Westaway said.

The chromosomes containing the mutations are then compared to almost 200 control chromosomes not affected by the disease. "The severity of the mutation is usually a very good clue that the gene has been found," she said. "That evidence is confirmed by continuing to find different, but severe, mutations in the same gene in new patients diagnosed with INAD, which we have done."

PLA2G6 is among 18 lipid-metabolizing genes in a protein family known as phospholipase A2 (PLA2), and INAD is the first inherited disorder associated with mutations in one of these genes. Its discovery "unequivocally" links PLA2 defects to neurodegeneration, researchers say, which is significant because similar lipid metabolism changes are seen in neurodegeneration associated with ischemia from stroke, spinal cord trauma, head injury and Alzheimer's disease, making this metabolic pathway a potential drug target.

In addition, iron is known to accumulate with age in brain regions attacked by Alzheimer's and Parkinson's diseases. "This is a common end effect of many neurodegenerative disorders," Hayflick said.
 

- June 18 in the journal Nature Genetics
 

www.ohsu.edu

 
Subscribe to Neurosciences Newsletter
E-mail Address:

 

The study was funded by Wellcome Trust; WellChild; two components of the National Institutes of Health – the National Eye Institute and the National Institute of Child Health and Human Development; L'Association Internationale De Dystrophie Neuro Axonale Infantile; the R.J. Murdock Foundation; the NBIA Disorders Association; the National Organization for Rare Disorders; the Paolo Zorzi Foundation; and the Italian National Ministry of Health.

Related Neurosciences News

Memories: It's all in the packaging
New Effort to Treat Stroke More Effectively
Atrial Fibrillation linked to Reduced Cognitive Performance
Human Memory Gene Identified
Laser Analysis Points to Brain Pigment's Hidden Anatomy
Cause of nerve fiber damage in multiple sclerosis identified
REGARDS Study: Stroke Symptoms Common Among General Population
Signals That Tell Fly Neurons to Extend or Retract
Potential link between celiac disease and cognitive decline discovered
Progesterone for Traumatic brain injury??


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us