XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
  Memory
  Regeneration
  Stroke
  Brain Diseases
  Headache
  Spinal Cord Diseases
  Demyelinating Diseases
  Neurodegenerative Diseases
  Taste
  Trigeminal Neuralgia
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Neurosciences Channel
subscribe to Neurosciences newsletter

Latest Research : Neurosciences

   DISCUSS   |   EMAIL   |   PRINT
Mapping the neural landscape of hunger
Aug 17, 2006, 15:36, Reviewed by: Dr. Priya Saxena

"Our results support the hypothesis that while single neurons are preferentially responsive to variations in metabolic status, neural ensembles appear to integrate the information provided by these neural sensors to maintain similar levels of activity across comparable behavioral states,"

 
The compelling urge to satisfy one's hunger enlists structures throughout the brain, as might be expected in a process so necessary for survival. But until now, studies of those structures and of the feeding cycle have been only fragmentary--measuring brain regions only at specific times in the feeding cycle. Now, however, Ivan de Araujo, Duke University Medical Center, and colleagues report they have mapped the activity of whole ensembles of neurons in multiple feeding-related brain areas across a full cycle of hunger-satiety-hunger. Their findings, reported in the August 17, 2006, issue of the journal Neuron, published by Cell Press, open the way to understanding how these ensembles of neurons integrate to form a sort of distributed "code" that governs the motivation that drives organisms to satisfy their hunger.

In their paper, Ivan de Araujo and colleagues implanted bundles of infinitesimal recording electrodes in areas of rat brain known to be involved in feeding, motivation, and behavior. Those areas include the lateral hypothalamus, orbitofrontal cortex, insular cortex, and amygdala. The researchers then recorded neuronal activity in those regions through a feeding cycle, in which the rats became hungry, fed on sugar water to satisfy that hunger, and then grew hungry again.

"This allowed us to measure both the ability of single neurons to encode for specific phases of a feeding cycle and how neuronal populations integrate information conveyed by these phase-specific neurons in order to reflect the animal's motivational state," wrote the researchers.

By isolating and comparing signals from particular neurons in the various regions at various times in the cycle, the researchers gained insight into the roles neurons in those regions played in feeding motivation and satisfaction, they wrote. The researchers found that they could, indeed, distinguish neurons that were sensitive to changes in satiety states as the animals satisfied their hunger. They could also measure how populations of neurons changed their activity over the different phases of a feeding cycle, reflecting the physiological state of the animals.

Importantly, they found that measuring the activity of populations of neurons was a much more effective way of measuring the satiety state of an animal than measuring activity of only individual neurons in an area. And the more neurons they included in such populations, the more accurate the measure of that satiety state, they found.

Araujo and colleagues concluded that their analysis showed that while single neurons were preferentially responsive to particular phases in the metabolic status of the animal as it went through a hunger-satiety-hunger cycle, "when combined as ensembles, however, these neurons gained the ability to provide a population code that allows for predictions on the current behavioral state (hunger/satiety) of the animal by integrating information conveyed by its constituent units."

"Our results support the hypothesis that while single neurons are preferentially responsive to variations in metabolic status, neural ensembles appear to integrate the information provided by these neural sensors to maintain similar levels of activity across comparable behavioral states," they concluded. "This distributed code acting across separate hunger phases might constitute a neural mechanism underlying meal initiation under different peripheral and metabolic environments," they wrote.
 

- "Neural Ensemble Coding of Satiety States." Publishing in Neuron 51, 483–494, August 17, 2006 DOI 10.1016/j.neuron.2006.07.009
 

www.neuron.org

 
Subscribe to Neurosciences Newsletter
E-mail Address:

 

The researchers include Ivan E. de Araujo, Ranier Gutierrez, Antonio Pereira, Jr., Miguel A.L. Nicolelis, and Sidney A. Simon of Duke University Medical Center in Durham, NC; Albino J. Oliveira-Maia of Duke University Medical Center in Durham, NC and Universidade do Porto in Porto, Portugal.

This work was supported by NIH DC-01065, Philip Morris USA Inc. and Philip Morris International. A.J.O.-M. is recipient of a GABBA Fellowship from FCT (Portugal).


Related Neurosciences News

Memories: It's all in the packaging
New Effort to Treat Stroke More Effectively
Atrial Fibrillation linked to Reduced Cognitive Performance
Human Memory Gene Identified
Laser Analysis Points to Brain Pigment's Hidden Anatomy
Cause of nerve fiber damage in multiple sclerosis identified
REGARDS Study: Stroke Symptoms Common Among General Population
Signals That Tell Fly Neurons to Extend or Retract
Potential link between celiac disease and cognitive decline discovered
Progesterone for Traumatic brain injury??


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us