XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
  Memory
  Regeneration
  Stroke
  Brain Diseases
  Headache
  Spinal Cord Diseases
  Demyelinating Diseases
  Neurodegenerative Diseases
  Taste
  Trigeminal Neuralgia
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Neurosciences Channel
subscribe to Neurosciences newsletter

Latest Research : Neurosciences

   DISCUSS   |   EMAIL   |   PRINT
Glial Thrombospondins Crucial to Construction of Brain's Information Superhighway
Mar 2, 2005, 17:23, Reviewed by: Dr.

"Fully understanding the contribution made by glial thrombospondins could make possible the development of thrombospondin-based therapies to stimulate and direct synapse formation,"

 
Communication in the brain travels from one nerve cell to another through critical connections called synapses. These neuron-to-neuron junctions form early in brain development, and their construction was thought to be guided by the nerve cells themselves.

Now, investigators supported by the National Institute on Drug Abuse (NIDA), National Institutes of Health, have discovered that cells called glia, known to provide support for neurons in the mature brain, also play a crucial role in formation of synapses during the surge of development following birth. This key insight into the process of normal synapse development may lead to improved treatment of conditions such as drug addiction and epilepsy, which are characterized in part by too many synapses.

"Synapses are the key connections between cells in the brain. We know that drugs alter these connections, and that the developing brain is vulnerable to addictive drugs' disruption of normal communication," says NIDA Director Dr. Nora D. Volkow. "Compounds that direct synapse formation may offer a therapeutic option for people fighting drug addiction or other neurologic conditions."

Glia account for 90 percent of the cells in a mammalian brain, but until recently scientists focused mainly on the supportive role that glial cells play in helping mature neurons survive. Dr. Barres, along with Stanford postdoctoral fellows Dr. Karen Christopherson and Dr. Erik Ullian, developed a method for growing neurons in a laboratory without glial cells. Then they isolated proteins produced by glial cells and observed the effect when they added the proteins to a culture of neurons. Two of the proteins, thrombospondin 1 and 2, led to the development of synapses�albeit functionally incomplete ones.

The synapses that developed in Dr. Barres' laboratory dish in the presence of thrombospondin were able to transmit signals but were unable to receive them. In other words, the neuron transmitting the signal is able to secrete a chemical messenger called a neurotransmitter but the neighboring neuron receiving the signal is unable to detect the presence of the neurotransmitter. Because completely functional synapses occur in the presence of glia, "we know that glia produce at least one other protein, which we have not yet identified, that is necessary to produce a fully functional synapse," Dr. Barres says. This yet unidentified protein enables the receiving neuron to detect the neurotransmitter sent from the neuron transmitting signal when synapses form.

To help confirm the role of the thrombospondins in synapse development, the scientists next developed a strain of mice that lacked the ability to produce thrombospondins 1 and 2; the brains of these mice had 40 percent fewer synapses than normal mice. Interestingly, glia only secrete these thrombospondins early in brain development, concurrent with the normal formation of synapses. These new findings raise the possibility that the relatively poor ability of the adult brain to form new synapses may be due to the low levels of the glial thrombospondins.

"Fully understanding the contribution made by glial thrombospondins could make possible the development of thrombospondin-based therapies to stimulate and direct synapse formation," notes Dr. Volkow.
 

- The research, led by Dr. Ben Barres of Stanford University School of Medicine in Stanford, California, is reported in the February 11, 2005 issue of the journal Cell
 

Fact sheets on the health effects of drugs of abuse and further information on NIDA research can be found on the NIDA web site

 
Subscribe to Neurosciences Newsletter
E-mail Address:

 

The National Institute on Drug Abuse is a component of the National Institutes of Health, U.S. Department of Health and Human Services. NIDA supports more than 85 percent of the world's research on the health aspects of drug abuse and addiction. The Institute carries out a large variety of programs to ensure the rapid dissemination of research information and its implementation in policy and practice.

Related Neurosciences News

Memories: It's all in the packaging
New Effort to Treat Stroke More Effectively
Atrial Fibrillation linked to Reduced Cognitive Performance
Human Memory Gene Identified
Laser Analysis Points to Brain Pigment's Hidden Anatomy
Cause of nerve fiber damage in multiple sclerosis identified
REGARDS Study: Stroke Symptoms Common Among General Population
Signals That Tell Fly Neurons to Extend or Retract
Potential link between celiac disease and cognitive decline discovered
Progesterone for Traumatic brain injury??


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us