XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
  Memory
  Regeneration
  Stroke
  Brain Diseases
  Headache
  Spinal Cord Diseases
  Demyelinating Diseases
  Neurodegenerative Diseases
  Taste
  Trigeminal Neuralgia
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Neurosciences Channel
subscribe to Neurosciences newsletter

Latest Research : Neurosciences

   DISCUSS   |   EMAIL   |   PRINT
New insight into Synesthesia
Mar 24, 2005, 19:18, Reviewed by: Dr.

"Our results suggest that synesthetic colors lead to improved behavioral performance in a manner similar to real colors. Because this study uses both psychophysical and neuroimaging measures in the same subjects in the study of synesthesia, we are able to examine specific aspects of the synesthetic experience that previous studies have not been able to address."

 
People with a form of synesthesia in which they see colors when viewing letters and numbers really do see colors, researchers, led by Edward M. Hubbard of the University of California San Diego, have found. What's more, functional magnetic resonance imaging (fMRI) of their brains reveals that they show activation of color-perception areas.

The researchers said their findings lend support to the hypothesis that the condition is due to cross-activation between adjacent brain areas involved in perceiving shapes and colors. Some synesthetes report seeing colors when listening to music, or feeling tactile shapes while tasting food. This cross-activation might develop, they theorize, by a failure of the "pruning" of neural connections between the areas in the developing brain.

The rare condition called synesthesia--in which people's sensory perceptual circuitry seems to be miswired--was long dismissed as an oddity not worthy of scientific study. Now, however, researchers such as Hubbard and his colleagues are using the condition to gain insights into the neural basis of perception.

In their experiments with synesthetes who report seeing colors when they view numbers or letters, the researchers first sought to determine whether synesthetes really see the colors.

In one such experiment, they presented six synesthetes with patterns of black letters or numbers--known as "graphemes"--on a white background. They chose those graphemes that the synesthetes reported elicited specific colors. They designed the experiment so that if the synesthetes really were seeing the colors, that color perception would help them distinguish shapes such as triangles or squares formed by the graphemes. In another experiment, the researchers found that synesthetic color helped the synesthetes pick out specific numbers or letters in a crowded display.

The researchers found that the synesthetic colors really did help the synesthetes distinguish the shapes or graphemes, compared to normal control subjects who were tested on the same patterns. However, the experiments with both the synesthetes and the controls also revealed that the synesthetic colors were not as effective as real colors in such tasks.

In fMRI scans, the researchers found that the synesthetes showed greater activation in a color-perception region of the cortex when viewing graphemes, compared to normal control subjects. The researchers found that the strength of this activation influences the strength of the synesthetic colors. In fMRI, harmless radio waves and magnetic fields are used to map regions of higher blood flow in the brain, which reflects higher activity in those regions.

Importantly, the researchers found evidence suggesting that synesthetes may be quite different from one another, which the researchers said "has profound implications for the studies of synesthesia that group together data from multiple synesthetes and treat them as if they all come from a homogeneous population.

"The use of single case studies in synesthesia is also of concern because the results obtained with one synesthete may not generalize to other synesthetes.

The researchers concluded that "Our results suggest that synesthetic colors lead to improved behavioral performance in a manner similar to real colors. Because this study uses both psychophysical and neuroimaging measures in the same subjects in the study of synesthesia, we are able to examine specific aspects of the synesthetic experience that previous studies have not been able to address."
 

- Publishing in Neuron, Volume 45, Number 6, March 24, 2005, pages 975-985.
 

neuron.org

 
Subscribe to Neurosciences Newsletter
E-mail Address:

 

Edward M. Hubbard, A. Cyrus Arman, Vilayanur S. Ramachandran, and Geoffrey M. Boynton: "Individual Differences among Grapheme-Color Synesthetes: Brain-Behavior Correlations"

The researchers include Edward M. Hubbard of the Salk Institute for Biological Studies and Center for Brain and Cognition at University of California, San Diego; A. Cyrus Arman and Geoffrey M. Boynton of the Salk Institute for Biological Studies; and Vilayanur S. Ramachandran of the Center for Brain and Cognition at University of California, San Diego. This research was funded by NIH grants.


Related Neurosciences News

Memories: It's all in the packaging
New Effort to Treat Stroke More Effectively
Atrial Fibrillation linked to Reduced Cognitive Performance
Human Memory Gene Identified
Laser Analysis Points to Brain Pigment's Hidden Anatomy
Cause of nerve fiber damage in multiple sclerosis identified
REGARDS Study: Stroke Symptoms Common Among General Population
Signals That Tell Fly Neurons to Extend or Retract
Potential link between celiac disease and cognitive decline discovered
Progesterone for Traumatic brain injury??


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us