XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
  Memory
   Intelligence
  Regeneration
  Stroke
  Brain Diseases
  Headache
  Spinal Cord Diseases
  Demyelinating Diseases
  Neurodegenerative Diseases
  Taste
  Trigeminal Neuralgia
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Memory Channel
subscribe to Memory newsletter

Latest Research : Neurosciences : Memory

   DISCUSS   |   EMAIL   |   PRINT
Mature brain-derived neurotrophic factor is key proteing for long term memory
Mar 10, 2005, 16:43, Reviewed by: Dr.

"Understanding how BDNF is made may help us to better understand the learning process, perhaps leading to better treatments for disorders of learning and memory"

 
A cellular enzyme appears to play a crucial role in the manufacture of a protein needed for long-term memory, according to a team of researchers led by scientists at the National Institute of Child Health and Human Development of the National Institutes of Health.

The protein is known as mBDNF, which stands for mature brain-derived neurotrophic factor. In an earlier study, another team of NICHD researchers had shown that mBDNF is essential for the formation of long-term memory, the ability to remember things for longer than a day.

"Understanding how BDNF is made may help us to better understand the learning process, perhaps leading to better treatments for disorders of learning and memory," said Duane Alexander, M.D., Director of the National Institute of Child Health and Human Development.

The research team was led by Y.Peng Loh Ph.D, of NICHD's Section on Cellular Neurobiology. The researchers published their work in the January 20 issue of Neuron.

Specifically, the researchers discovered that the enzyme carboxypeptidase E, (CPE) is needed to deliver the early, or inactive, form of BDNF�proBDNF�to a special compartment in the neuron (nerve cell.) Once in the compartment, proBDNF is chemically converted into active mBDNF. After mBDNF is formed, it is released to the outside of the neuron, where it binds to receptors on other neurons and stimulates them to form long-term memory.

Dr. Loh explained that, like other proteins, proBDNF is made inside the endoplasmic reticulum, a convoluted network of tubes and channels inside the cell. The proBDNF winds through the endoplasmic reticulum until it reaches another structure within the cell, the golgi apparatus. There, the proBDNF binds to CPE, which protrudes from special rafts of fatty, cholesterol-rich molecules known as lipids. If this binding process does not take place, proBDNF cannot be converted to its active form. Dr. Loh explained that the proBDNF molecule has four projections, resembling prongs. These prongs fit into a corresponding indentation on CPE, analogous to the way a plug for an electric appliance fits into an electric wall outlet, Dr. Loh said.

The golgi apparatus then encases the lipid rafts�along with proBDNF�in bubble-like structures known as vesicles. Within these vesicles, proBDNF is converted to mBDNF by other enzymes. The vesicles are then transported to the cell's outer membrane, where they remain until they are ready to be secreted. Once the cell receives an electrical signal from another neuron, these vesicles fuse with the cell's outer membrane, open up, and release mBDNF.

During their research, Dr. Loh and her colleagues observed mice genetically incapable of producing CPE. In these mice, proBDNF could not be delivered into the lipid raft-rich vesicles for conversion to mBDNF. Instead, it appeared to leak out of the golgi apparatus, where it leached through the cell membrane without first having been converted to active mBDNF. Because they cannot make mBDNF, CPE-deficient mice have poor long-term memory.

Dr. Loh added that, in the near future, an understanding of the chemical mechanism she and her colleagues deciphered in the current study may provide insight into long-term memory deficits. She explained that other researchers have learned that some human beings lack normal CPE due to mutations in the CPE gene. Future research may determine if the CPE mutation affects these individuals' long-term memory.
 

- The research team was led by Y.Peng Loh Ph.D, of NICHD's Section on Cellular Neurobiology. The researchers published their work in the January 20 issue of Neuron.
 

http://www.nichd.nih.gov/

 
Subscribe to Memory Newsletter
E-mail Address:

 

The NICHD is part of the National Institutes of Health (NIH), the biomedical research arm of the federal government. NIH is an agency of the U.S. Department of Health and Human Services. The NICHD sponsors research on development, before and after birth; maternal, child, and family health; reproductive biology and population issues; and medical rehabilitation.

Related Memory News

Memories: It's all in the packaging
Atrial Fibrillation linked to Reduced Cognitive Performance
Human Memory Gene Identified
How the Brain Loses Plasticity of Youth
Apple Juice Inproves Memory By Boosting Acetylcholine Production
Fresh Light on How we form New Memories
Multi-tasking affects the brain's learning systems
Music thought to enhance intelligence
Our grip on reality is slim
Short term synaptic plasticity play a widespread role in information processing


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us