XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
  Anti-Inflammatory
  Antivirals
  Antihypertensives
  Anticholesterol
  Anti-Clotting Drugs
  Anti Cancer Drugs
  Hypnotics
  PPI
  Antibiotics
  Analgesics
  Surfactants
  Fatty Acids
  Adrenergics
  Metals
  Varenicline
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Pharmacology Channel
subscribe to Pharmacology newsletter

Latest Research : Pharmacology

   DISCUSS   |   EMAIL   |   PRINT
New method that could predict individual patient responses to drug treatments
Apr 20, 2006, 15:46, Reviewed by: Dr. Sanjukta Acharya

The discovery of this new technology for predicting responses to drugs, which is not limited to individual genetic differences, will hopefully be a key component in the pharmaceutical industry's aim to understand how patients might benefit from more individualised therapies.

 
Scientists from Imperial College London and Pfizer have developed a new method that could predict individual patient responses to drug treatments. The authors anticipate that the development will advance biomedical research further towards development of personalised medicines.

Research published today in Nature demonstrates the new 'pharmaco-metabonomic' approach that uses a combination of advanced chemical analysis and mathematical modelling to predict drug-induced responses in individual patients. The method is based on analysis of the body's normal metabolic products, metabolites, and metabolite patterns that are characteristic of the individual. The authors hypothesize that these individual patterns can be used to diagnose diseases, predict an individual's future illnesses, and their responses to treatments.

Not all drugs are effective in all patients and in rare cases adverse drug reactions can occur in susceptible individuals. To address this, researchers from Imperial College and Pfizer have been exploring new methods for profiling individuals prior to drug therapy. The new approach, if successful, requires the analysis of the metabolite profiles of an individual from a urine, or other biofluid, sample.

The researchers tested their approach by administering paracetamol to rats and measuring how it affected their livers and how it was excreted. Before giving the dose they measured the levels of the natural metabolites in the rats' urine. Metabolites being small molecules produced by normal body functions, they can indicate a body's drug response. After creating a 'pre-dose urinary profile' for each rat, the researchers used computer modelling to relate the nature of the pre-dose metabolite profile to the nature of the post-dose response.

Professor Jeremy Nicholson, from Imperial College London, who led the research, says: "This new technique is potentially of huge importance to the future of healthcare and the pharmaceutical industry. The 'pharmaco-metabonomic' approach is able to account for genetic as well as many environmental factors, and other important contributors to individual health such as the gut microfloral activity. These factors strongly influence how an individual absorbs and processes a drug and also influence their individual metabolism, making this new approach the first step towards the development of more personalised healthcare for large numbers of patients."

The discovery of this new technology for predicting responses to drugs, which is not limited to individual genetic differences, will hopefully be a key component in the pharmaceutical industry's aim to understand how patients might benefit from more individualised therapies. The new method is expected to be synergistic with existing pharmacogenomic approaches.

The new methodology is in early stage of development and will be studied in humans to evaluate its possible clinical application. The researchers hope this new technique might one day allow doctors to personalise drug treatments for some individuals, providing physicians with the ability to prescribe medicines that will be most effective for certain patient groups, and at a tailored dose-range for maximum efficacy and safety.
 

- Nature, Current Issue
 

www.imperial.ac.uk

 
Subscribe to Pharmacology Newsletter
E-mail Address:

 



Related Pharmacology News

Phase Ib Trial Is Evaluating Bavituximab Administered With Common Chemotherapy Regimens
Two-component lantibiotic with therapeutic potential discovered
Prescription pain medication abuse on rise
Antibiotic inhibits cancer gene activity
NRTIs limits the atherogenic side effect of the protease inhibitors
Cyclin-dependent kinase inhibitors: The latest anti-inflammatory
FDA requested to promptly approve 17-P to prevent premature birth
Rapamycin shown to inhibit angiogenesis
Tigecycline, world�s first glycylcycline expanded broad-spectrum antibiotic, launched in UK
Ibuprofen - worsening cognitive function


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us