XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
  Reproduction
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Evolution Channel
subscribe to Evolution newsletter

Special Topics : Evolution

   DISCUSS   |   EMAIL   |   PRINT
Brain is broadly wired for reproduction
Nov 12, 2005, 20:49, Reviewed by: Dr.


"Understanding how the brain's neural circuitry controls behavior has been largely a black box. I think that through studies like these we and others are going to make substantial progress in understanding the neural circuits that underlie behavior."


 
Howard Hughes Medical Institute researchers have discovered a vast network of neurons in the brain of mice that governs reproduction and controls the effects of reproductive status on other brain functions.

In their studies, the researchers found neural circuits that coordinate a complex interplay between neurons that control reproduction and brain areas that carry the neural signals triggered by odorant molecules and those triggered by pheromones, chemical signals produced by animals. The researchers characterize their findings as an initial step in understanding the far-reaching influence that odors and pheromones may have on reproduction and other behaviors.

The research team, which was led by HHMI investigator Linda B. Buck at the Fred Hutchinson Cancer Research Center, included first author Ulrich Boehm and Zhihua Zou, who did the work as postdoctoral fellows while in Buck's lab. The researchers published their studies in an immediate early publication on November 10, 2005, in the journal Cell. Related studies by HHMI investigator Catherine Dulac are published in the same issue.

The scientists began their studies by focusing on tracing the neural pathways leading to and from neurons that produce gonadotropin releasing hormone (GnRH), which is also known as luteinizing hormone releasing hormone (LHRH). These neurons regulate sexual physiology -- including onset of puberty, ovulation, and the menstrual cycle in females and testosterone production in males -- by regulating the release of hormones from the pituitary gland. Interestingly, GnRH neurons also appear to be involved in the control of sexual behaviors.

"Consistent with the idea that GnRH neurons might have additional functions beyond controlling the pituitary, other investigators have shown that GnRH axons can be found in many different areas of the brain," said Buck. "Those findings suggested that GnRH neurons were sending signals to other neurons, but the neurons that received the signals were unknown. Even more importantly for us, though certain brain areas had been implicated in pheromone signaling, specific neurons that transmit pheromone signals to GnRH neurons had not been identified."

To map the neural circuits involving GnRH neurons, the researchers used a genetic tracing method that they previously developed for charting neural pathways. They first engineered mice in which GnRH neurons produce barley lectin (BL), a tracer molecule that travels upstream and downstream to connected neurons, and green fluorescent protein (GFP), to mark the producing cells. By visualizing the locations of BL, GFP, and GnRH neurons and their axons, the researchers were able to identify neurons directly connected to GnRH neurons. They also determined which neurons sent signals to GnRH neurons and which neurons received signals from GnRH neurons.

These studies revealed that connections go in both directions between GnRH neurons and relay stations in the brain that process signals from both the olfactory and vomeronasal systems, said Buck.

In mice and other mammals, the olfactory and vomeronasal systems are distinct pathways for sensing chemicals in the environment. While the main olfactory system that begins in the nose processes odors, the vomeronasal (accessory) system receives signals -- triggered by pheromones -- from the vomeronasal organ (VNO) in the nasal septum. However, the systems are not entirely parallel. Buck and her colleagues have shown that the VNO can detect some odorants. And conversely, there is evidence that some pheromone signals require input from the nose in addition to the VNO.

"Our findings suggest that both odor and pheromone relay areas in the brain are sending pheromone signals to GnRH neurons. Moreover, GnRH neurons, in turn, are sending information back to those relay areas," said Buck. "This surprising finding suggests that the GnRH neurons are influencing the processing of odor and pheromone signals in the brain. It may be the brain's way of saying whether or not it wants to receive particular sensory information -- depending on the reproductive circumstances, such as the stage of the female's estrus cycle."

The researchers also sought to determine whether pheromones could trigger olfactory pathways to activate GnRH neurons. To investigate this, they exposed male and female mice, respectively, to female or male sex-related pheromones and measured how neurons that are connected to GnRH neurons reacted. They also exposed the males to clean bedding, which was thought to be a neutral stimulus.

They found that pheromones triggered responses in neurons upstream of GnRH neurons in both odor and pheromone relay areas. "This suggests that there is a redundancy in pheromone detection, with at least some pheromone information being conveyed by both the main and accessory systems," said Buck. "This redundancy is not too surprising, if you consider how important it is to the animal to be able to sense pheromones. The redundancy might guard against the loss of a pheromone receptor from either the VNO or the olfactory epithelium causing a devastating loss of pheromone detection."

The studies showed that the odor of clean bedding also activated some neurons upstream of GnRH neurons. "This suggests that the animal's environment could also influence GnRH neurons, perhaps signaling whether the animal is in the optimal environment for mating." Buck said.

In tracing the connections between GnRH neurons and neurons throughout the brain, Boehm and his colleagues soon found that they had undertaken an enormous task to figure out these connections. "We were really shocked with what we found," Buck said. "We found that, although the GnRH neurons number only about eight hundred in mice, they connect directly with about fifty thousand other neurons. And these neurons are in brain areas involved in a wide array of functions -- for example, appetite, feeding, reward, arousal, and the relay of information to higher brain areas that control cognitive function. I don't think anyone ever suspected this complexity. It reveals that GnRH neurons are master integrators of information about the external environment, as well as the internal state of the animal."

The studies also suggest that GnRH neurons influence a wide array of brain functions, possibly coordinating those functions with neuroendocrine status in order to optimize reproductive success, according to Buck.

Almost all the GnRH neuron-connected areas were identical in male and female mouse brains. However, there were some telltale sex differences in the circuitry, which offer important new pathways for investigating differences in male and female reproductive physiology and behavior, Buck said.

Although it is still early, the researchers suspect that the findings in mice could have implications for humans. "Because humans don't have a vomeronasal system, many have speculated that they may not detect pheromones," Buck said. "But these studies clearly indicate that the main olfactory system, which humans do have, is capable of transmitting pheromone signals. Therefore, if there are human pheromones -- although no one has yet identified one -- they would presumably transmit their signals through the main olfactory pathway."

Although the findings are considered a first step in exploring the GnRH reproduction-related circuitry in the brain, Buck acknowledges that they have already learned a great deal just by defining the circuits. "These findings now set the stage for studies in which the neurons in those circuits can be analyzed to determine the genes they selectively express. Then those genes can be used -- for example in gene knockout studies -- to determine what role the neurons play in reproduction and behavior," Buck said.

"Understanding how the brain's neural circuitry controls behavior has been largely a black box," she said. "I think that through studies like these we and others are going to make substantial progress in understanding the neural circuits that underlie behavior."
 

- The researchers published their studies in an immediate early publication on November 10, 2005, in the journal Cell.
 

www.hhmi.org

 
Subscribe to Evolution Newsletter
E-mail Address:

 



Related Evolution News

New approach will pinpoint genes linked to evolution of human brain
New genetic analysis forces re-draw of insect family tree
Giant insects might reign if only there was more oxygen in the air
Infection Status Drives Interspecies Mating Choices in Fruit Fly Females
Mother birds give a nutritional leg up to chicks with unattractive fathers
Mammals Evolve Faster on Islands!
A Bacterial Protein Puts a New Twist on DNA Transcription
Why Does Sex Exist?
Pseudogenes Research Reinforces Theory of Evolution
Non-human primates may be linchpin in evolution of language


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us