XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
  X Chromosome
  Genetic Disorders
  Cloning
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Genetics Channel
subscribe to Genetics newsletter

Latest Research : Genetics

   DISCUSS   |   EMAIL   |   PRINT
A Small RNA That Neutralizes a Protein Linked to Tumor Development
Mar 22, 2005, 20:51, Reviewed by: Dr.

Aptamers�single-stranded nucleic acid molecules that are 50�100 bases long and can be selected for their ability to bind directly and tightly to specific proteins�are less likely to be targeted and destroyed by the body�s natural defenses than some other types of potential therapeutic molecules.


 
For most of human history, cancer has been incurable. But with the invention of anesthesia in the mid-19th century, surgeons were able to remove some forms of cancer surgically.

Radiotherapy arrived next, soon after the discovery of X rays in 1896. Chemotherapy, now a mainstay of cancer treatment, did not arrive until the mid-1940s, when nitrogen mustard, an alkylating agent related to the mustard gas used in the two World Wars, was developed as an anticancer agent. Unfortunately, although cancer cells are hypersensitive to the effects of alkylating agents�molecules that introduce lethal changes into the cell�s DNA�normal cells are also targeted by them, although less damage is caused because normal cells typically divide slower than cancer cells. Using chemotherapy based on alkylating agents to treat cancer is like using a sledgehammer to crack a nut. But with improved knowledge about how cancer cells differ from normal cells, chemotherapeutics are now being designed that hit only cancer cells.

Many of these new chemotherapeutics target protein receptors called tyrosine kinases. These receptors, which sit on the cell surface, normally stimulate intracellular pathways that control proliferation and other cellular functions in response to growth factors. In tumors, these receptors often have mutations that allow them to become active without growth factor binding, which results in the uncontrolled proliferation that is characteristic of cancer cells. For instance, mutations in the RET receptor tyrosine kinase are responsible for multiple endocrine neoplasia (MEN) type 2 syndromes. Whereas external stimulation by a growth factor is normally needed before two RET molecules can bind together (a process called dimerization) to activate intracellular signaling cascades, in MEN type 2A, a mutation in the RET receptor tyrosine kinase provokes (or induces) dimerization without external stimulation.

In recent years, several proteins and various small synthetic chemicals have been designed that specifically inhibit the activity of mutated receptor tyrosine kinases and show anticancer activity. Domenico Libri and colleagues are now working on another class of molecules, called aptamers, that have potential as anticancer drugs. Aptamers�single-stranded nucleic acid molecules that are 50�100 bases long and can be selected for their ability to bind directly and tightly to specific proteins�are less likely to be targeted and destroyed by the body�s natural defenses than some other types of potential therapeutic molecules.

To find an aptamer able to recognize the RET receptor kinase within a cellular membrane environment, the researchers used whole-cell SELEX (systematic evolution of ligands by exponential enrichment), a process in which large pools of oligonucleotides are enriched for molecules that can distinguish between a real and sham target. First, they incubated a large pool of RNAs with PC12 cells, a rat cell line not expressing RET, to remove sequences binding non-specifically to the PC12 cell surface. Unbound sequences were recovered and applied to PC12 cells expressing human RET with the MEN type 2A mutation that causes dimerization. This time, bound sequences were retained, and the whole selection process was repeated another 14 times to select for aptamers that recognize the dimeric form of the RET extracellular domain.

Of the 67 sequences pulled out of the final pool of RNAs, the researchers found one sequence, D4, that not only bound the extracellular domain of RET but also blocked RET downstream signaling events and subsequent cellular and molecular changes. The researchers suggest that D4 blocks the dimerization-dependent activation of RET�whether it�s induced by its physiological signaling molecule or by an activating mutation�and suggest that their method can be used to identify macromolecules with potential therapeutic effects against other transmembrane receptors involved in tumorigenesis, particularly since the whole-cell SELEX approach should efficiently select aptamers that recognize these receptors as they are found on the surface of tumor cells.
 

- (2005) A Small RNA That Neutralizes a Protein Linked to Tumor Development. PLoS Biol 3(4): e147.
 

Print PDF (40K)

 
Subscribe to Genetics Newsletter
E-mail Address:

 

DOI: 10.1371/journal.pbio.0030147

Published: March 22, 2005

Copyright: � 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License


Related Genetics News

New research into csd genes could help designing strategies for breeding honey bees
Williams Syndrome, the brain and music
Genetic mutation identified as cause of cranio-lenticulo-sutural dysplasia
Chance Fluctuations in mRNA Output in Mammalian Cells
Transposon Silencing Keeps Jumping Genes in Their Place
GATA2 - predicting susceptibility to coronary artery disease
Exploring genetics of congenital malformations
Genome insertions and deletions (INDELs) provide expanded view of human genetic differences
BRIT1 gene identified as protector of DNA
FDA Approves Idursulfase As First Treatment for Hunter Syndrome


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us