XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
  Autoimmune Diseases
  Immunosupressants
  Monoclonal Antibodies
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Immunology Channel
subscribe to Immunology newsletter

Latest Research : Immunology

   DISCUSS   |   EMAIL   |   PRINT
How defensins prevent viruses from entering cells
Sep 19, 2005, 12:13, Reviewed by: Dr.

"This discovery provides a basic understanding of a first-line defense against such viruses as HIV and the influenza virus. This finding may ultimately lead to new strategies for preventing viral illness, and to increased understanding of why some individuals are more resistant to certain kinds of viral infection than are other individuals."

 
Compounds called defensins--known to prevent viruses from entering cells--appear to do so by preventing the virus from merging to cells' outer membrane, according to a study by researchers at the National Institute of Child Health and Human Development and the National Heart Lung and Blood Institute, both of the National Institutes of Health, and the University of California at Los Angeles.

"This discovery provides a basic understanding of a first-line defense against such viruses as HIV and the influenza virus," said Duane Alexander, M.D., Director of the NICHD. "This finding may ultimately lead to new strategies for preventing viral illness, and to increased understanding of why some individuals are more resistant to certain kinds of viral infection than are other individuals."

The means by which many viruses infect a cell is a two-step process, said the study's senior author, Leonid V. Chernomordik, Ph.D., Head of NICHD's Section on Membrane Biology in the Laboratory of Cellular and Molecular Biophysics. First, the membrane of the virus' outer coating, or envelope, must attach, or bind to, the outer membrane of the cell. After this attachment has taken place, the viral envelope membrane combines with, or fuses to, the cell membrane. After the two membranes have fused, the virus inserts its genetic material into the cell.

Defensins are produced by cells that are among the first to come in contact with viruses, Dr. Chernomordik explained. Such cells include leukocytes, a type of immune cell, and epithelial cells, which line the surfaces of many organs and tissues.

In the current study, the researchers studied epithelial cells from the inner surface of the lungs. The researchers discovered that defensins block the influenza virus entry into cells by preventing the fusion of viral and cell membranes. Specifically, the researchers studied the antiviral effects of two different classes of defensins, theta-defensin and beta defensin.

Membranes--the outer covering of cells and of many kinds of viruses--are coated with a layer of molecules called glycoproteins. The glycoproteins protrude from the membranes' surface, in somewhat the same way bristles stick out of a hairbrush. (See figure 1 at http://www.nichd.nih.gov/new/releases/defensins.cfm.) When the virus first infects the cell, glycoproteins on both the cell surface and on the virus spread apart, as the viral membrane approaches the cell membrane. To extend the hairbrush comparison, it's as if you could slide the bristles to the side, and leave bare patches on each hairbrush. At the bare patches, both the cell membrane and the viral envelope come together, and membrane fusion takes place.

Defensins, the researchers discovered, bind crosswise to glycoproteins, preventing the viral and cell glycoproteins from spreading apart. In keeping with the hairbrush comparison, it's as if the bristles of the hairbrushes were bound together with numerous small rubber bands. (See figure 2 at http://www.nichd.nih.gov/new/releases/defensins.cfm.)

"Defensins do not kill the virus, they just prevent it from entering the cell," Dr. Chernomordik said. "Viruses that are not allowed to enter the cells can then be destroyed by the cells of the immune system."

Dr. Chernomordik and his colleagues also studied the activity of mannan-binding lectin, a compound produced by the liver. Like defensins, mannan-binding lectin also protects against viral infection. The researchers discovered that mannan-binding lectin prevents viral infection in the same way that defensins do, by binding crosswise to glycoproteins.

Future studies of defensins may yield new strategies for preventing viral diseases, Dr. Chernomordik added. For example, by learning more about how defensins bind to glycoproteins, researchers one day may be able to devise new drugs that prevent viruses from entering cells.

Similarly, researchers might explore whether potential differences in defensin production might affect the ability to resist viral infection, Dr. Chernomordik theorized. For example, slight variations in the genes for defensins might make the molecules either more, or less, effective, at combating viruses. Similarly, some individuals may produce more defensins than do others.
 

- The study, appearing in the September 11 Nature Immunology, also received funding from NIH's National Center for Research Resources.
 

www.nichd.nih.gov

 
Subscribe to Immunology Newsletter
E-mail Address:

 

Other authors of the paper were Eugenia Leikina, Helene Delanoe-Ayari, Kamran Melikov, and Andrew Chen of the NICHD; Myoung-Soon Cho, of the NHLBI; and Alan J. Waring, Wei Wang, Yongming Xie, Joseph A. Loo and Robert I. Lehrer of the University of California at Los Angeles.

The NICHD is part of the National Institutes of Health (NIH), the biomedical research arm of the federal government. NIH is an agency of the U.S. Department of Health and Human Services. The NICHD sponsors research on development, before and after birth; maternal, child, and family health; reproductive biology and population issues; and medical rehabilitation


Related Immunology News

Pregnant women with lupus are at higher risk for complications
Molecular 'signature' protects cells from viruses
Discovery in the evolution of the immune system absorbing cells
Leeds University study shows eculizumab may be an effective therapy for PNH
Research Reveals Inner Workings of Immune System �Thermostat�
CD23 Protein in Stool Samples may Indicate Food Allergy
Molecular signals triggering maturation of natural killer cells uncovered
New method to analyse the Major Histocompatibility Complex (MHC) of the human genome
Front Line Immune Cells Mature in Four Stages - Study
Caspase-12 gene that shuts down immune system is found in 20% of people of African descent


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us